色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

人工智能、區塊鏈、算法...這30個大數據熱詞你知道嗎

智能感知與物聯網技術研究所 ? 來源:未知 ? 作者:鄧佳佳 ? 2018-02-27 15:51 ? 次閱讀

前言

本文為您挑選了30個和大數據相關的網絡熱詞,看看你了解多少?

2017年,我國大數據產業保持高速發展態勢,各級政府和企業大力推進,技術創新取得明顯突破,大數據應用推進勢頭良好,產業體系初具雛形,支撐能力日益增強。展望2018年,大數據產業發展將迎來“黃金期”,在滿城盡談大數據的時代,與時俱進地了解一些大數據知識對生活和工作都大有裨益。本文為您挑選了30個和大數據相關的網絡熱詞,看看你了解多少?

一.人工智能

人工智能(Artificial Intelligence),英文縮寫為AI。它是研究、開發用于模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。

人工智能是計算機科學的一個分支,它企圖了解智能的實質,并生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。人工智能從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智能帶來的科技產品,將會是人類智慧的“容器”。人工智能可以對人的意識、思維的信息過程的模擬。人工智能不是人的智能,但能像人那樣思考、也可能超過人的智能。

人工智能是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智能是包括十分廣泛的科學,它由不同的領域組成,如機器學習計算機視覺等等,總的說來,人工智能研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種“復雜工作”的理解是不同的。2017年12月,人工智能入選“2017年度中國媒體十大流行語”。

二.區塊鏈

pIYBAFqVEtmACLcoAAAAoGc90WM572.gif

狹義來講,區塊鏈是一種按照時間順序將數據區塊以順序相連的方式組合成的一 種鏈式數據結構, 并以密碼學方式保證的不可篡改和不可偽造的分布式賬本。廣義來講,區塊鏈技術是利用塊鏈式數據結構來驗證與存儲數據、利用分布式節點共識算法來生成和更新數據、利用密碼學的方式保證數據傳輸和訪問的安全、利用由自動化腳本代碼組成的智能合約來編程和操作數據的一種全新的分布式基礎架構與計算范式。

三.圖靈測試

圖靈測試(The Turing test)由艾倫·麥席森·圖靈發明,指測試者與被測試者(一個人和一臺機器)隔開的情況下,通過一些裝置(如鍵盤)向被測試者隨意提問。

進行多次測試后,如果有超過30%的測試者不能確定出被測試者是人還是機器,那么這臺機器就通過了測試,并被認為具有人類智能。圖靈測試一詞來源于計算機科學和密碼學的先驅阿蘭·麥席森·圖靈寫于1950年的一篇論文《計算機器與智能》,其中30%是圖靈對2000年時的機器思考能力的一個預測,目前我們已遠遠落后于這個預測。

四.回歸分析regression analysis

o4YBAFqVD_uASUI4AAB205QXb_o118.jpg

回歸分析(regression analysis)是確定兩種或兩種以上變量間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的變量的多少,分為一元回歸和多元回歸分析;按照因變量的多少,可分為簡單回歸分析和多重回歸分析;按照自變量和因變量之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變量和一個因變量,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變量,且自變量之間存在線性相關,則稱為多重線性回歸分析。

五.MapReduce

o4YBAFqVEB2AB0eTAAB4vm0afp0345.jpg

MapReduce是一種編程模型,用于大規模數據集(大于1TB)的并行運算。概念"Map(映射)"和"Reduce(歸約)",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。它極大地方便了編程人員在不會分布式并行編程的情況下,將自己的程序運行在分布式系統上。 當前的軟件實現是指定一個Map(映射)函數,用來把一組鍵值對映射成一組新的鍵值對,指定并發的Reduce(歸約)函數,用來保證所有映射的鍵值對中的每一個共享相同的鍵組。

六.貪心算法

貪心算法(又稱貪婪算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。

貪心算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無后效性,即某個狀態以前的過程不會影響以后的狀態,只與當前狀態有關。

貪心算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。每一步只考慮一個數據,他的選取應該滿足局部優化的條件。若下一個數據和部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加算法停止 。

七.數據挖掘

數據挖掘(英語:Data mining),又譯為資料探勘、數據采礦。它是數據庫知識發現(英語:Knowledge-Discovery in Databases,簡稱:KDD)中的一個步驟。數據挖掘一般是指從大量的數據中通過算法搜索隱藏于其中信息的過程。數據挖掘通常與計算機科學有關,并通過統計、在線分析處理、情報檢索、機器學習、專家系統(依靠過去的經驗法則)和模式識別等諸多方法來實現上述目標。

八.數據可視化

數據可視化,是關于數據視覺表現形式的科學技術研究。其中,這種數據的視覺表現形式被定義為,一種以某種概要形式抽提出來的信息,包括相應信息單位的各種屬性和變量。

它是一個處于不斷演變之中的概念,其邊界在不斷地擴大。主要指的是技術上較為高級的技術方法,而這些技術方法允許利用圖形、圖像處理、計算機視覺以及用戶界面,通過表達、建模以及對立體、表面、屬性以及動畫的顯示,對數據加以可視化解釋。與立體建模之類的特殊技術方法相比,數據可視化所涵蓋的技術方法要廣泛得多。

九.分布式計算Distributed computing

在計算機科學中,分布式計算(英語:Distributed computing,又譯為分散式計算)這個研究領域,主要研究分散系統(Distributed system)如何進行計算。分散系統是一組電子計算機(computer),通過計算機網絡相互鏈接與通信后形成的系統。把需要進行大量計算的工程數據分區成小塊,由多臺計算機分別計算,在上傳運算結果后,將結果統一合并得出數據結論的科學。

十.分布式架構

pIYBAFqVEL-Af272AAB-Doyfax0299.jpg

分布式架構是 分布式計算技術的應用和工具,目前成熟的技術包括J2EE, CORBA和.NET(DCOM),這些技術牽扯的內容非常廣,相關的書籍也非常多,本文不介紹這些技術的內容,也沒有涉及這些技術的細節,只是從各種分布式系統平臺產生的背景和在軟件開發中應用的情況來探討它們的主要異同。

十一.Hadoop

Hadoop是一個由Apache基金會所開發的分布式系統基礎架構。

用戶可以在不了解分布式底層細節的情況下,開發分布式程序。充分利用集群的威力進行高速運算和存儲。

Hadoop實現了一個分布式文件系統(Hadoop Distributed File System),簡稱HDFS。HDFS有高容錯性的特點,并且設計用來部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)來訪問應用程序的數據,適合那些有著超大數據集(large data set)的應用程序。HDFS放寬了(relax)POSIX的要求,可以以流的形式訪問(streaming access)文件系統中的數據。

Hadoop的框架最核心的設計就是:HDFS和MapReduce。HDFS為海量的數據提供了存儲,則MapReduce為海量的數據提供了計算。

十二.BI商業智能

BI(Business Intelligence)即商務智能,它是一套完整的解決方案,用來將企業中現有的數據進行有效的整合,快速準確的提供報表并提出決策依據,幫助企業做出明智的業務經營決策。

商業智能的概念最早在1996年提出。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。而這些數據可能來自企業的CRM、SCM等業務系統。

商業智能能夠輔助的業務經營決策,既可以是操作層的,也可以是戰術層和戰略層的決策。為了將數據轉化為知識,需要利用數據倉庫、聯機分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什么新技術,它只是數據倉庫、OLAP和數據挖掘等技術的綜合運用。

十三.非關系型數據庫NoSQL

非關系型數據庫,又被稱為NoSQL(Not Only SQL ),意為不僅僅是SQL( Stmuctured QueryLanguage,結構化查詢語言),據維基百科介紹,NoSQL最早出現于1998 年,是由Carlo Storzzi最早開發的個輕量、開源、不兼容SQL 功能的關系型數據庫,2009 年,在一次分布式開源數據庫的討論會上,再次提出了NOSQL 的概念,此時NOSQL主要是指I非關系型、分布式、不提供ACID (數據庫事務處理的四個本要素)的數據庫設計模式。同年,在業特蘭大舉行的“NO:SQL(east)”討論會上,對NOSQL 最普遍的定義是“非關聯型的”,強調Key-Value 存儲和文檔數據庫的優點,而不是單純地反對RDBMS,至此,NoSQL 開始正式出現在世人面前。

十四.結構化數據

結構化數據,簡單來說就是數據庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS數據庫;教育一卡通;政府行政審批;其他核心數據庫等。

基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。

十五.半結構化數據

pIYBAFqVEUaAEMrjAAB6W5s5n1U809.jpg

和普通純文本相比,半結構化數據具有一定的結構性,但和具有嚴格理論模型的關系數據庫的數據相比。OEM(Object exchange Model)是一種典型的半結構化數據模型。

在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系數據庫中。我們會將數據按業務分類,并設計相應的表,然后將對應的信息保存到相應的表中。比如我們做一個業務系統,要保存員工基本信息:工號、姓名、性別、出生日期等等;我們就會建立一個對應的staff表。

十六.非結構化數據

非結構化數據庫是指其字段長度可變,并且每個字段的記錄又可以由可重復或不可重復的子字段構成的數據庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖象、聲音、影視、超媒體等信息)。

十七.數據清洗

數據清洗從名字上也看的出就是把“臟”的“洗掉”,指發現并糾正數據文件中可識別的錯誤的最后一道程序,包括檢查數據一致性,處理無效值和缺失值等。因為數據倉庫中的數據是面向某一主題的數據的集合,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為“臟數據”。我們要按照一定的規則把“臟數據”“洗掉”,這就是數據清洗。而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之后再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。數據清洗是與問卷審核不同,錄入后的數據清理一般是由計算機而不是人工完成。

十八.算法

算法(Algorithm)是指解題方案的準確而完整的描述,是一系列解決問題的清晰指令,算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個算法有缺陷,或不適合于某個問題,執行這個算法將不會解決這個問題。不同的算法可能用不同的時間、空間或效率來完成同樣的任務。一個算法的優劣可以用空間復雜度與時間復雜度來衡量。

十九.深度學習

深度學習的概念源于人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。

深度學習的概念由Hinton等人于2006年提出。基于深信度網(DBN)提出非監督貪心逐層訓練算法,為解決深層結構相關的優化難題帶來希望,隨后提出多層自動編碼器深層結構。此外Lecun等人提出的卷積神經網絡是第一個真正多層結構學習算法,它利用空間相對關系減少參數數目以提高訓練性能。

深度學習是機器學習研究中的一個新的領域,其動機在于建立、模擬人腦進行分析學習的神經網絡,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。

二十.人工神經網絡

人工神經網絡(Artificial Neural Networks,簡寫為ANNs)也簡稱為神經網絡(NNs)或稱作連接模型(Connection Model),它是一種模仿動物神經網絡行為特征,進行分布式并行信息處理的算法數學模型。這種網絡依靠系統的復雜程度,通過調整內部大量節點之間相互連接的關系,從而達到處理信息的目的。

二十一.數據聚類

數據聚類 (英語 : Cluster analysis) 是對于靜態數據分析的一門技術,在許多領域受到廣泛應用,包括機器學習,數據挖掘,模式識別,圖像分析以及生物信息。聚類是把相似的對象通過靜態分類的方法分成不同的組別或者更多的子集(subset),這樣讓在同一個子集中的成員對象都有相似的一些屬性,常見的包括在坐標系中更加短的空間距離等。

二十二.隨機森林

在機器學習中,隨機森林是一個包含多個決策樹的分類器, 并且其輸出的類別是由個別樹輸出的類別的眾數而定。 Leo Breiman和Adele Cutler發展出推論出隨機森林的算法。 而 “Random Forests” 是他們的商標。 這個術語是1995年由貝爾實驗室的Tin Kam Ho所提出的隨機決策森林(random decision forests)而來的。這個方法則是結合 Breimans 的 “Bootstrap aggregating” 想法和 Ho 的”random subspace method”” 以建造決策樹的集合。

二十三.分治法

pIYBAFqVEjGADup8AACJ9FglGOY628.jpg

在計算機科學中,分治法是一種很重要的算法。字面上的解釋是“分而治之”,就是把一個復雜的問題分成兩個或更多的相同或相似的子問題,再把子問題分成更小的子問題……直到最后子問題可以簡單的直接求解,原問題的解即子問題的解的合并。這個技巧是很多高效算法的基礎,如排序算法(快速排序,歸并排序),傅立葉變換(快速傅立葉變換)。

二十四.支持向量機

pIYBAFqVEkSAUchoAAB62dRhl_s217.jpg

在機器學習領域,支持向量機SVM(Support Vector Machine)是一個有監督的學習模型,通常用來進行模式識別、分類、以及回歸分析。

SVM的主要思想可以概括為兩點:⑴它是針對線性可分情況進行分析,對于線性不可分的情況,通過使用非線性映射算法將低維輸入空間線性不可分的樣本轉化為高維特征空間使其線性可分,從而 使得高維特征空間采用線性算法對樣本的非線性特征進行線性分析成為可能。

二十五.熵

熵(entropy)指的是體系的混亂的程度,它在控制論、概率論、數論、天體物理、生命科學等領域都有重要應用,在不同的學科中也有引申出的更為具體的定義,是各領域十分重要的參量。熵的概念由魯道夫·克勞修斯(Rudolf Clausius)于1850年提出,并應用在熱力學中。1948年,克勞德·艾爾伍德·香農(Claude Elwood Shannon)第一次將熵的概念引入信息論中。

二十六.辛普森悖論

辛普森悖論亦有人譯為辛普森詭論,為英國統計學家E.H.辛普森(E.H.Simpson)于1951年提出的悖論,即在某個條件下的兩組數據,分別討論時都會滿足某種性質,可是一旦合并考慮,卻可能導致相反的結論。

當人們嘗試探究兩種變量是否具有相關性的時候,比如新生錄取率與性別,報酬與性別等,會分別對之進行分組研究。辛普森悖論是在這種研究中,在某些前提下有時會產生的一種現象。即在分組比較中都占優勢的一方,會在總評中反而是失勢的一方。該現象于20世紀初就有人討論,但一直到1951年E.H.辛普森在他發表的論文中,該現象才算正式被描述解釋。后來就以他的名字命名該悖論。

為了避免辛普森悖論的出現,就需要斟酌各分組的權重,并乘以一定的系數去消除以分組數據基數差異而造成的影響。同時必需了解清楚情況,是否存在潛在因素,綜合考慮。

二十七.樸素貝葉斯模型

pIYBAFqVEpWACAO2AACBTtXmVDM496.jpg

貝葉斯分類是一系列分類算法的總稱,這類算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。樸素貝葉斯算法(Naive Bayesian) 是其中應用最為廣泛的分類算法之一。

樸素貝葉斯分類器基于一個簡單的假定:給定目標值時屬性之間相互條件獨立。

通過以上定理和“樸素”的假定,我們知道:P( Category | Document) = P ( Document | Category ) * P( Category) / P(Document)。

二十八.數據科學家

數據科學家是指能采用科學方法、運用數據挖掘工具對復雜多量的數字、符號、文字、網址、音頻視頻等信息進行數字化重現與認識,并能尋找新的數據洞察的工程師或專家(不同于統計學家或分析師)。一個優秀的數據科學家需要具備的素質有:懂數據采集、懂數學算法、懂數學軟件、懂數據分析、懂預測分析、懂市場應用、懂決策分析等。

二十九.并行處理

并行處理是計算機系統中能同時執行兩個或更多個處理機的一種計算方法。處理機可同時工作于同一程序的不同方面。并行處理的主要目的是節省大型和復雜問題的解決時間。為使用并行處理,首先需要對程序進行并行化處理,也就是說將工作各部分分配到不同處理機中。而主要問題是并行是一個相互依靠性問題,而不能自動實現。此外,并行也不能保證加速。但是一個在 n 個處理機上執行的程序速度可能會是在單一處理機上執行的速度的 n 倍。

三十.云計算

云計算(cloud computing)是基于互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。云是網絡、互聯網的一種比喻說法。過去在圖中往往用云來表示電信網,后來也用來表示互聯網和底層基礎設施的抽象。因此,云計算甚至可以讓你體驗每秒10萬億次的運算能力,擁有這么強大的計算能力可以模擬核爆炸、預測氣候變化和市場發展趨勢。用戶通過電腦、筆記本、手機等方式接入數據中心,按自己的需求進行運算。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4622

    瀏覽量

    93067
  • 人工智能
    +關注

    關注

    1792

    文章

    47442

    瀏覽量

    239016
  • 大數據
    +關注

    關注

    64

    文章

    8897

    瀏覽量

    137537
  • 區塊鏈
    +關注

    關注

    111

    文章

    15562

    瀏覽量

    106269

原文標題:人工智能、區塊鏈、算法...這30個大數據熱詞你知道嗎?

文章出處:【微信號:tyutcsplab,微信公眾號:智能感知與物聯網技術研究所】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    嵌入式和人工智能究竟是什么關系?

    數據傳輸的壓力,還提高了系統的響應速度。而在物聯網中,嵌入式系統更是一核心的組成部分。通過將人工智能算法應用于物聯網設備,我們可以實現對海量數據
    發表于 11-14 16:39

    人工智能云計算大數據三者關系

    人工智能、云計算與大數據之間的關系是緊密相連、相互促進的。大數據人工智能提供了豐富的訓練資源和驗證環境;云計算為大數據
    的頭像 發表于 11-06 10:03 ?483次閱讀

    《AI for Science:人工智能驅動科學創新》第6章人AI與能源科學讀后感

    、優化等方面的應用有了更清晰的認識。特別是書中提到的基于大數據和機器學習的能源管理系統,通過實時監測和分析能源數據,實現了能源的高效利用和智能化管理。 其次,第6章通過多個案例展示了人工智能
    發表于 10-14 09:27

    AI for Science:人工智能驅動科學創新》第4章-AI與生命科學讀后感

    很幸運社區給我一閱讀此書的機會,感謝平臺。 《AI for Science:人工智能驅動科學創新》第4章關于AI與生命科學的部分,為我們揭示了人工智能技術在生命科學領域中的廣泛應用和深遠影響。在
    發表于 10-14 09:21

    《AI for Science:人工智能驅動科學創新》第一章人工智能驅動的科學創新學習心得

    ,還促進了新理論、新技術的誕生。 3. 挑戰與機遇并存 盡管人工智能為科學創新帶來了巨大潛力,但第一章也誠實地討論了伴隨而來的挑戰。數據隱私、算法偏見、倫理道德等問題不容忽視。如何在利用AI提升科研效率
    發表于 10-14 09:12

    risc-v在人工智能圖像處理應用前景分析

    RISC-V在人工智能圖像處理領域的應用前景十分廣闊,主要得益于其開源性、靈活性和低功耗等特點。以下是對RISC-V在人工智能圖像處理應用前景的詳細分析: 一、RISC-V的基本特點 RISC-V
    發表于 09-28 11:00

    人工智能ai4s試讀申請

    目前人工智能在繪畫對話等大模型領域應用廣闊,ai4s也是方興未艾。但是如何有效利用ai4s工具助力科研是需要研究的課題,本書對ai4s基本原理和原則,方法進行描訴,有利于總結經驗,擬按照要求準備相關體會材料??茨芊裼兄谌腴T和提高ss
    發表于 09-09 15:36

    名單公布!【書籍評測活動NO.44】AI for Science:人工智能驅動科學創新

    大力發展AI for Science的原因。 第2章從科學研究底層的理論模式與主要困境,以及人工智能三要素(數據、算法、算力)出發,對AI for Science的技術支撐進行解讀。 第3章介紹了在
    發表于 09-09 13:54

    報名開啟!深圳(國際)通用人工智能大會將啟幕,國內外大咖齊聚話AI

    8月28日至30日,2024深圳(國際)通用人工智能大會暨深圳(國際)通用人工智能產業博覽會將在深圳國際會展中心(寶安)舉辦。大會以“魅力AI·無限未來”為主題,致力于打造全球通用人工智能
    發表于 08-22 15:00

    FPGA在人工智能中的應用有哪些?

    FPGA(現場可編程門陣列)在人工智能領域的應用非常廣泛,主要體現在以下幾個方面: 一、深度學習加速 訓練和推理過程加速:FPGA可以用來加速深度學習的訓練和推理過程。由于其高并行性和低延遲特性
    發表于 07-29 17:05

    基于多物理參數數據融合和先進人工智能算法的鋰電池失控監測傳感器

    基于多物理參數數據融合和先進人工智能算法的鋰電池失控監測傳感器是多種方案中的優選項!是一種快速、準確、可靠、應用廣泛的傳感方案!可有效監測鋰離子電池失控風險,保障化學能儲能電站安全
    的頭像 發表于 06-18 17:19 ?839次閱讀
    基于多物理參數<b class='flag-5'>數據</b>融合和先進<b class='flag-5'>人工智能算法</b>的鋰電池<b class='flag-5'>熱</b>失控監測傳感器

    科達嘉電感器在大數據人工智能領域被廣泛應用

    近年來,大數據人工智能成為科技領域的熱門話題。大數據人工智能提供了大量的數據作為輸入,使得人工智能算
    的頭像 發表于 02-29 13:56 ?499次閱讀

    為何電感器對于大數據人工智能產業發展至關重要

    電感器作為智能設備電路中的重要元件,已經成為推動大數據智能產業發展與革新的基礎技術??七_嘉通過技術創新,為大數據人工智能領域提供高可靠的
    的頭像 發表于 02-28 14:48 ?509次閱讀
    為何電感器對于<b class='flag-5'>大數據</b>及<b class='flag-5'>人工智能</b>產業發展至關重要

    嵌入式人工智能的就業方向有哪些?

    嵌入式人工智能的就業方向有哪些? 在新一輪科技革命與產業變革的時代背景下,嵌入式人工智能成為國家新型基礎建設與傳統產業升級的核心驅動力。同時在此背景驅動下,眾多名企也紛紛在嵌入式人工智能領域布局
    發表于 02-26 10:17

    科達嘉電感器廣泛應用于大數據人工智能領域為AI賦能

    近年來,大數據人工智能成為科技領域的熱門話題。大數據人工智能提供了大量的數據作為輸入,使得人工智能算
    的頭像 發表于 02-23 17:29 ?856次閱讀
    主站蜘蛛池模板: 久久草这在线观看免费| 欧美精品AV无码一区二区| 日本特黄的免费大片视频| 波多野结衣二区| 翁用力的抽插| 精品久久久噜噜噜久久久app| 1313久久国产午夜精品理论片| 欧美多毛的大隂道| 国产AV精品久久久免费看| 午夜免费小视频| 久久精品热99看二| ebc5恐怖5a26房间| 小776 论坛| 久久这里都是精品| 超碰公开在线caopon| 亚洲高清国产品国语在线观看| 久久精品久久久| 动漫美女的禁| 怡春院院日本一区二区久久| 日本漂亮妈妈7观整有限中| 精品国产乱码久久久久乱码| 99久久麻豆AV色婷婷综合| 我要搞av| 免费视频国产| 国产亚洲999精品AA片在线爽| 67194免费入口| 小SAO货水真多把你CAO烂| 伦理片在线线手机版韩国免费观看 | 国产在线视频分类精品| 99re6热这里在线精品视频| 无码欧美喷潮福利XXXX| 美女挑战50厘米长的黑人 | Chineseman瘦老头77| 亚洲国产女人aaa毛片在线| 欧美性XXXXX极品娇小| 久久a级片| 国产交换丝雨巅峰| chinese帅哥gv在线看| 有人在线观看的视频吗免费| 午夜伦4480yy妇女久久| 欧美97色伦影院在线观看|