前言
目前富鋰材料循環穩定性和倍率性能都已經得到了極大的提升,雖然短時間內還難以撼動三元材料的地位,但是相信隨著富鋰材料技術的不斷成熟,富鋰材料能夠憑借著高容量的優勢,成為下一代高比能鋰離子電池正極材料的有力競爭者。
鋰離子電池負極材料近年來發展很快,例如傳統的晶體硅負極和氧化亞硅負極,比容量可以突破1000mAh/g以上,相比之下,正極材料發展相對較為緩慢,目前較為成熟的NCA和NCM三元材料容量多為180mAh/g左右,雖然現在一些高鎳的NCM材料容量可達200mAh/g以上,但是循環性能往往不太穩定,而且高鎳材料對生產工藝的要求也遠遠高于傳統的LiCoO2材料。
因此三元材料進一步提升容量的空間并不是很大,但是有一類材料,它的容量可以輕松做到了200mAh/g以上,甚至可以做到300mAh/g,可以為鋰離子電池帶來巨大的能量密度的提升,這種材料就是富鋰材料。
富鋰材料容量高,并且還具有低成本的優勢,可以說是非常理想的鋰離子電池正極材料,當然任何事情都不可能是完美的,在首次使用的過程中為了發揮出富鋰材料的高容量,要采用高電壓活化,這一過程中除了形成我們需要的Li2MnO3物相外,也會生成Li2O,還會釋放活性氧,這不僅會破壞富鋰材料自身的結構,還會導致電解液的氧化分解,造成較高的不可逆容量。
此外富鋰材料在循環過程中還存在著層狀結構向尖晶石結構轉變的趨勢,這也導致富鋰材料的電壓平臺在循環過程中會持續的下降,容量不斷衰減,使得富鋰材料循環性能較差,反應機理如下圖所示。
富鋰材料活化制度是影響其循環性能的一個重要因素,以色列科學家Prasant Kumar Nayak等研究顯示,活化電壓和循環電壓對于富鋰材料的循環性能都有十分顯著的影響。
例如他們發現Li1.17Ni0.25Mn0.58O2在經過4.8V活化,并在2.3-4.6V之間循環的電池,雖然容量高達242mAh/g,但是循環性能很差,并且循環100次后電壓平臺從3.62V衰降到了3.55V,而經過4.6V活化,并在2.3V-4.3V之間循環的電池,雖然比容量較低僅為160mAh/g,但是循環性能優異,并且循環100次未出現平臺電壓衰降,如下圖所示,而沒有經過高電壓活化的材料,容量較低僅為100mAh/g左右,可見富鋰材料的活化制度和循環制度對于富鋰材料的循環具有巨大的影響。
富鋰材料在較高的工作電壓下,存在界面穩定性差的問題,因此元素摻雜和材料的表面包覆處理是克服富鋰材料循環性能差、電壓衰降的主要方法,哈爾濱工業大學的戴長松等開發了一款Se摻雜的富鋰材料Li1.2[Mn0.7Ni0.2Co0.1]0.8-XSeXO2,相比沒有經過摻雜的富鋰材料,該材料的晶體結構更加規則,陽離子混排也更少。
電化學測試發現,該材料首次效率可達77%,在10C的大倍率下仍然能夠發揮178mAh/g的容量,同時摻雜的Se元素很好的抑制了富鋰材料的電壓衰降,循環100次容量衰降僅為5%,機理研究顯示Se元素抑制了O2-被氧化為O2,從而減少了材料由層狀結構向尖晶石結構轉變,進而提高了材料的倍率性能和循環性能。
富鋰材料界面穩定性差,容易導致副反應的發生,影響電池的循環壽命,一種有效的解決辦法就是“表面包覆”,例如AlF3、Al2O3和Li3PO4等材料都可以用于富鋰材料的表面包覆,改善富鋰材料的表面穩定性。
哈工大的杜春雨等等提出了一種SnO2包覆方案,他們利用了SnO2中的氧缺位,促進Li2MnO3結構的形成,不僅改善了富鋰材料的循環性能和倍率性能,還提高了富鋰的材料的容量,達到了264.6mAh/g,相比于沒有包覆處理的富鋰材料提高了38.2mAh/g,這也為富鋰材料表面改性處理提供了一個新的思路。
華南師范大學的Dongrui Chen等[5]借助聚多巴胺模版法,利用Li3PO4對富鋰材料進行了包覆處理,Li3PO4包覆層的厚度僅為5nm左右。Li3PO4包覆層極大的改善了富鋰的材料的循環性能,0.2C,2.0-4.8V循環100次,容量保持率為78%,而沒有經過包覆處理的富鋰材料容量保持率僅為58%,同時Li3PO4包覆層也顯著提高了富鋰的材料的倍率性能,如下圖所示。
富鋰材料的低溫性能也是阻礙富鋰材料應用的一個重要因素,中國工程物理研究院的Guobiao Liu等對于富鋰材料低溫下容量下降的機理做了詳細的研究,一般認為,富鋰材料在低溫下由于活化產生的Li2MnO3材料的數量較少,導致容量偏低。
但Guobiao Liu的研究發現,即便是材料內的Li2MnO3含量較高,在低溫下容量發揮也很低,Li2MnO3含量并不是影響材料容量發揮的決定性因素,Guobiao Liu認為低溫下較差的電極動力學特性會抑制Mn4+/Mn3+反應,從而導致材料的容量發揮較低。
循環性能研究顯示,雖然低溫導致富鋰材料的容量發揮較低,但是卻顯著的提升了富鋰材料的循環性能,如下圖所示(電池A在25℃下循環,含有較多數量的Li2MnO3,電池B,在低溫-20℃下循環含有較少數量的Li2MnO3,電池C首先在25℃下活化,然后在-20℃下循環,含有數量較多的Li2MnO3)。
A、B和C三種電池在循環100次后,容量保持率分別為68.3%、80.9%和88.1%,通過對三種電池中的富鋰材料的結構研究顯示,低溫很好的抑制了富鋰材料從層狀結構向尖晶石結構轉變,從而顯著改善了富鋰材料的循環性能。
富鋰材料面臨的主要問題是晶體結構穩定性差和表面副反應多,目前主要的解決辦法是:摻雜、表面包覆和新型活化工藝。摻雜的主要目的是穩定Ni和Mn元素,進而提高富鋰材料的結構穩定性,Co摻雜是一種較為常見的摻雜方法。
相比于元素摻雜方法,表面包覆是提高富鋰材料性能更為有效的方法,包覆材料分為電化學活性物質和非活性物質,常見的活性物質為尖晶石材料,尖晶石材料具有良好的穩定性,能夠顯著的改善富鋰材料的性能,但是尖晶石材料在3V以下時,會發生不可逆的相變,這也是我們在使用尖晶石包覆時需要特別注意的一點。
非活性物質涂層材料主要包含金屬氧化物、碳和金屬氟化物等,這些材料能夠顯著的改善富鋰材料的界面穩定性,提升材料的循環性能,常見的包覆材料主要有AlF3、Li3PO4和ZrO2等材料。
富鋰材料的活化過程對于富鋰材料的結構穩定性有著至關重要的影響,在活化的過程中會導致富鋰材料顆粒的表面穩定性降低,引起界面副反應增加,為此對于活化制度的研究就顯得尤為重要(下圖為富鋰材料發展圖解)。
富鋰材料經過多年的研究,人們對于其電化學反應機理認識逐漸深入,通過材料結構調整、元素摻雜和表面包覆等手段,顯著改善了富鋰材料的結構和表面穩定性,配合活化制度的研究,目前富鋰材料循環穩定性和倍率性能都已經得到了極大的提升,雖然短時間內還難以撼動三元材料的地位,但是相信隨著富鋰材料技術的不斷成熟,富鋰材料能夠憑借著高容量的優勢,成為下一代高比能鋰離子電池正極材料的有力競爭者。
-
三元材料
+關注
關注
10文章
121瀏覽量
15341 -
富鋰材料
+關注
關注
0文章
4瀏覽量
2199
原文標題:【鑫鼎磁鐵·高工前哨】富鋰材料日趨成熟 高容量挑戰三元
文章出處:【微信號:gh_a6b91417f850,微信公眾號:高工鋰電技術與應用】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論