色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習框架只為GPU? 答案在這里

模擬對話 ? 2018-03-14 18:29 ? 次閱讀

目前大多數的機器學習是在處理器上完成的,大多數機器學習軟件會針對GPU進行更多的優化,甚至有人認為學習加速必須在GPU上才能完成,但事實上無論是運行機器學習的處理器還是優化的深度學習框架,都不單只針對GPU,代號為“Skylake”的英特爾至強SP處理器就證明了這一點。

機器學習軟件在英特爾至強SP系列白金版上的一系列基準測試性能表現與在GPU上非常相近,了解了底層架構之后,我們可以看到,在性能如此接近的情況下,使用GPU加速器更像是在購買一種“奢侈品”,用戶在GPU以外還有很多其他的選擇。毫無疑問,在用戶只需要機器學習的情況下,“加速器”在性能和能耗方面更有優勢,大多數人需要的不只是一臺“智能的用于機器學習的服務器”,那就讓我們來重點看一下英特爾至強SP 白金級處理器為什么是最佳的選擇:

CPU優化深度學習框架和函數庫

英特爾在基于GPU優化的框架中增加了CPU優化深度學習框架, 打破了深度學習框架偏重于GPU而忽視了CPU的行業現狀,解決了目前這些框架缺乏CPU優化的實際問題。

- TensorFlow由谷歌開發,是一個領先的深度學習和機器學習框架,有面向Linux的處理器優化

- Caffe是圖片識別領域最受歡迎的應用之一,英特爾提供的優化可以在CPU運行時提高Caffe的性能

- Torch是當下流行的深度學習框架,需要在優化的CPU上應用,可以通過英特爾軟件優化(比如英特爾至強可擴展處理器)提高Torch在CPU上的性能

- Theano是一個開源的Python庫,很受機器學習程序員的歡迎,它可以幫助程序員高效地定義、優化和評估涉及多維陣列的數學表達式

- Neon是一個基于Python的深度學習框架,目的是在現代深度神經網絡上實現易用性和可擴展性,并致力于在所有硬件上實現性能的最大化

- MXNet是一個開源的深度學習框架

- Python及其函數庫是機器學習應用里最受歡迎的基礎組成,Python加速版過去幾年里得到了廣泛應用,并且可以直接下載或通過Conda、yum、apt-get或Docker images下載

- BigDL是一個面向Apache Spark的分布式深度學習函數庫。通過BigDL用戶可以把自己的深度學習應用當作標準Apache Spark程序來編寫,直接在現有Apache Spark或Hadoop集群上運行。在Torch基礎上開發的BigDL可以為深度學習提供綜合性支持:包括數值計算(通過Tensor)和高級神經網絡;此外用戶還可以利用BigDL把提前訓練的Caffe或Torch模型載入Spark程序。英特爾曾聲稱在一個單節點至強處理器上(例如與GPU相比),BigDL中的處理速度比原始開源Caffe、Torch或TensorFlow要高一個數量級

- 英特爾MKL-DNN是一個開源的、性能強化的函數庫,用于加速在CPU上的深度學習框架

- 英特爾數據分析加速庫(DAAL)是一個包含了被優化的算法構建模塊的開源函數庫,針對大數據問題最相關的數據分析階段。這個函數庫適用于當下流行的數據平臺,包括Hadoop、Spark、R和Matlab

結果證明了一切,無論是TensorFlow、Caffe,還是Torch、Theano,這些深度學習框架都針對英特爾數學核心函數庫(Intel MKL)和英特爾高級矢量擴展指令集(Intel AVX)進行了優化。通過CPU優化,TensorFlow和Caffe基準測試中的CPU性能分別提高了72倍和82倍。

機器學習加速器

科技與行業的發展都是瞬息萬變的,機器學習的加速器也會從GPU轉向FPGAASIC等等,除非我們永遠只需要一臺只能用于機器學習的服務器,只要在一臺服務器上想實現可以支持各種的工作負載,英特爾至強可擴展處理器無疑是最佳的解決方案。加速器的選擇正在變得多元化,這是整個行業的發展趨勢,多核CPU(英特爾至強融核處理器,特別是“Knights Mill”版)和FPGA(英特爾至強處理器,包含Intel/Altera FPGA)都可以提供更靈活的選擇、卓越的性價比和高能效。基于英特爾至強融核處理器訓練或學習一個AlexNet圖片分類系統的速度,是使用NVIDIA GPU的類似配置系統的2.3倍;英特爾至強融核處理器的性價比最高可以是GPU解決方案的9倍,每瓦性能高達8倍,英特爾Nervana將推出更多專為人工智能開發的產品。英特爾至強SP系列處理器為機器學習提供了卓越的性能,同時相比其他解決方案也為我們帶來了更多的功能與選擇,讓我們在產品與行業的發展中都可以擁有更多可能。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • FPGA
    +關注

    關注

    1635

    文章

    21837

    瀏覽量

    608351
  • gpu
    gpu
    +關注

    關注

    28

    文章

    4830

    瀏覽量

    129778
  • 人工智能
    +關注

    關注

    1800

    文章

    48083

    瀏覽量

    242164
  • 機器學習
    +關注

    關注

    66

    文章

    8460

    瀏覽量

    133414
  • 深度學習
    +關注

    關注

    73

    文章

    5527

    瀏覽量

    121879
收藏 人收藏

    評論

    相關推薦

    深度學習工作負載中GPU與LPU的主要差異

    ,一個新的競爭力量——LPU(Language Processing Unit,語言處理單元)已悄然登場,LPU專注于解決自然語言處理(NLP)任務中的順序性問題,是構建AI應用不可或缺的一環。 本文旨在探討深度學習工作負載中GPU
    的頭像 發表于 12-09 11:01 ?2858次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>工作負載中<b class='flag-5'>GPU</b>與LPU的主要差異

    GPU深度學習中的應用 GPUs在圖形設計中的作用

    隨著人工智能技術的飛速發展,深度學習作為其核心部分,已經成為推動技術進步的重要力量。GPU(圖形處理單元)在深度學習中扮演著至關重要的角色,
    的頭像 發表于 11-19 10:55 ?965次閱讀

    NPU在深度學習中的應用

    設計的硬件加速器,它在深度學習中的應用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對深度學習算法優化的處理器,它與傳統的CPU和GPU
    的頭像 發表于 11-14 15:17 ?1212次閱讀

    PyTorch GPU 加速訓練模型方法

    深度學習領域,GPU加速訓練模型已經成為提高訓練效率和縮短訓練時間的重要手段。PyTorch作為一個流行的深度學習
    的頭像 發表于 11-05 17:43 ?782次閱讀

    GPU深度學習應用案例

    GPU深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是
    的頭像 發表于 10-27 11:13 ?643次閱讀

    深度學習GPU加速效果如何

    圖形處理器(GPU)憑借其強大的并行計算能力,成為加速深度學習任務的理想選擇。
    的頭像 發表于 10-17 10:07 ?343次閱讀

    FPGA做深度學習能走多遠?

    。例如,在數據中心中,可以將 FPGA 與 CPU 或 GPU 結合使用,根據不同的任務需求進行靈活的資源分配和協同計算,提高整個系統的性能和效率。 ? 算法優化和創新:隨著深度學習算法的不斷發展和優化
    發表于 09-27 20:53

    LM258在這個電路里是電壓跟隨器嗎?R4在這里不影響輸出電壓嗎?

    我想問一下LM258在這個電路里是電壓跟隨器嗎?R4在這里不影響輸出電壓嗎?根據虛短的原理,V-是等于Vref。 那么Vo和V-的關系怎么分析呢,是相等嗎?怎么根據虛斷的原理分析Vo和V-的關系?這里是怎么得到Vo=V-的呢?
    發表于 08-13 06:05

    NVIDIA推出全新深度學習框架fVDB

    在 SIGGRAPH 上推出的全新深度學習框架可用于打造自動駕駛汽車、氣候科學和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發表于 08-01 14:31 ?753次閱讀

    基于Python的深度學習人臉識別方法

    基于Python的深度學習人臉識別方法是一個涉及多個技術領域的復雜話題,包括計算機視覺、深度學習、以及圖像處理等。在這里,我將概述一個基本的
    的頭像 發表于 07-14 11:52 ?1371次閱讀

    深度學習常用的Python庫

    深度學習常用的Python庫,包括核心庫、可視化工具、深度學習框架、自然語言處理庫以及數據抓取庫等,并詳細分析它們的功能和優勢。
    的頭像 發表于 07-03 16:04 ?805次閱讀

    TensorFlow與PyTorch深度學習框架的比較與選擇

    深度學習作為人工智能領域的一個重要分支,在過去十年中取得了顯著的進展。在構建和訓練深度學習模型的過程中,深度
    的頭像 發表于 07-02 14:04 ?1236次閱讀

    新手小白怎么學GPU云服務器跑深度學習?

    新手小白想用GPU云服務器跑深度學習應該怎么做? 用個人主機通常pytorch可以跑但是LexNet,AlexNet可能就直接就跑不動,如何實現更經濟便捷的實現GPU云服務器
    發表于 06-11 17:09

    BACKUP_PRIMASK和RESTORE_PRIMASK在這里主要作用是什么?

    ); } 請問,BACKUP_PRIMASK和RESTORE_PRIMASK在這里主要作用是什么?像是對中斷某些掩碼的壓棧出棧,具體在這里什么意思呢?感謝
    發表于 04-29 07:10

    FPGA在深度學習應用中或將取代GPU

    、筆記本電腦或機架式服務器上訓練神經網絡時,這不是什么大問題。但是,許多部署深度學習模型的環境對 GPU 并不友好,比如自動駕駛汽車、工廠、機器人和許多智慧城市環境,在這些環境中硬件必
    發表于 03-21 15:19
    主站蜘蛛池模板: 99RE6这里只有精品国产AV | 交换年轻夫妇HD中文字幕 | 国产高清在线露脸一区 | 久久久精品国产免费A片胖妇女 | 再深点灬舒服灬太大了在线视频 | 国产AV麻豆出品在线播放 | 乌克兰肛交影视 | 无码国产色欲XXXX视频 | 中国女人内谢69xxxxxx直播 | 广西美女色炮150p图 | 国产欧美精品国产国产专区 | 99精品国产AV一区二区麻豆 | 中文字幕永久在线 | 欧美精品专区第1页 | 亚洲国产精品线在线观看 | 国产成人免费 | 精品少妇高潮蜜臀涩涩AV | 本庄优花aⅴ全部在线影片 被滋润的艳妇疯狂呻吟白洁老七 | 爱做久久久久久 | 奶好大下面流了好多水水 | 国产成人精品自线拍 | 一本道无码字幕在线看 | 欧美精品久久久久久久久大尺度 | 亚洲中文字幕乱倫在线 | 好湿好紧水多AAAAA片秀人网 | 亚洲国产精品无码2019 | 久草在线草a免费线看 | 神电影院午夜dy888我不卡 | 日本枯瘦娇小 | 花蝴蝶在线观看免费8 | gratis videos欧美最新 | babesvideos性欧美 | 欧美一区二区视频高清专区 | 欧美最猛黑人XXXXWWW | 狠狠色狠狠色综合日日小说 | 内射后入在线观看一区 | 女的把腿张开男的往里面插 | 美女裸露胸部100%无遮挡 | 中文字幕在线视频在线看 | 中国女人内谢69xxxxxx直播 | 日日碰狠狠添天天爽 |