這次的平衡車,使用到了卡爾曼濾波,下面談談使用心得
我們是利用角速度傳感器和加速度傳感器測量得到角度和角速度,但是由于車子是運動的,我們利用加速度得到的角度并不完全正確,由于噪聲干擾,我們對角速度傳感器的測量值也存在懷疑。于是我們就要進行濾波,通過兩個傳感器數值上的相互關系來得到我們想要的結果。我們使用卡爾曼濾波器連接這兩個測量值。
首先開感性的理解一下卡爾曼,引用網上(百度百科)的經典解釋:
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假 設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時 間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(White Gaussian Noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(Gaussian Distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。
假 如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟 k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定 度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由于我們用 于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的 covariance來判斷。因為Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78* (25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現 在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入 k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。這里的5就是上面的k時 刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的Kg,就是卡爾曼增益(Kalman Gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
然后看看我們的代碼,代碼來自網絡,使用的是ouravr某大牛的代碼
#include "Kalman.h"
float Q_angle=0.001, Q_gyro=0.003, R_angle=0.5, dt=0.005;
//注意:dt的取值為kalman濾波器采樣時間;
float P[2][2] = {
{ 1, 0 },
{ 0, 1 }
};
float Pdot[4] ={0,0,0,0};
const char C_0 = 1;
float q_bias, angle_err, PCt_0, PCt_1, E, K_0, K_1, t_0, t_1;
//-------------------------------------------------------
void Kalman_Filter(float angle_m,float gyro_m) //gyro_m:gyro_measure
{
angle+=(gyro_m-q_bias) * dt;//先驗估計
Pdot[0]=Q_angle - P[0][1] - P[1][0];// Pk-' 先驗估計誤差協方差的微分
Pdot[1]=- P[1][1];
Pdot[2]=- P[1][1];
Pdot[3]=Q_gyro;
P[0][0] += Pdot[0] * dt;// Pk- 先驗估計誤差協方差微分的積分 = 先驗估計誤差協方差
P[0][1] += Pdot[1] * dt;
P[1][0] += Pdot[2] * dt;
P[1][1] += Pdot[3] * dt;
angle_err = angle_m - angle;//zk-先驗估計
PCt_0 = C_0 * P[0][0];
PCt_1 = C_0 * P[1][0];
E = R_angle + C_0 * PCt_0;
K_0 = PCt_0 / E;//Kk
K_1 = PCt_1 / E;
t_0 = PCt_0;
t_1 = C_0 * P[0][1];
P[0][0] -= K_0 * t_0;//后驗估計誤差協方差
P[0][1] -= K_0 * t_1;
P[1][0] -= K_1 * t_0;
P[1][1] -= K_1 * t_1;
angle += K_0 * angle_err;//后驗估計
q_bias += K_1 * angle_err;//后驗估計
angle_dot = gyro_m-q_bias;//輸出值(后驗估計)的微分 = 角速度
}
我們一個個語句進行解釋
angle+=(gyro_m-q_bias) * dt
首先我們要利用系統的過程模型,來預測下一狀態的系統。假設現在的系統狀態是k,根據系統的模型,可以基于系統的上一狀態而預測出現在狀態:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
我們的矩陣X為:
(angle
gyro)
我們的矩陣A為:
( 1 1
0 1)
要注意的是我們得到的是X(k|k-1)!!這可不是我們要的結果
然后是
Pdot[0]=Q_angle - P[0][1] - P[1][0];// Pk-' 先驗估計誤差協方差的微分
Pdot[1]=- P[1][1];
Pdot[2]=- P[1][1];
Pdot[3]=Q_gyro;
P[0][0] += Pdot[0] * dt;// Pk- 先驗估計誤差協方差微分的積分 = 先驗估計誤差協方差
P[0][1] += Pdot[1] * dt;
P[1][0] += Pdot[2] * dt;
P[1][1] += Pdot[3] * dt;
這8句一起進行解釋
到現在為止,我們的系統結果已經更新了,可是,對應于X(k|k-1)的covariance還沒更新。我們用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
Pdot是P的微分。
我們的Q是
(Q_angle 0
0 Q_gyro)
積分后協方差就算出來了,同樣注意也是P(k|k-1)。具體怎么算~~~好吧我承認我線代沒有學好~~~算了好久。。。。
angle_err = angle_m - angle;//這句好像沒有必要說~~
接下來算卡爾曼增益:
PCt_0 = C_0 * P[0][0];
PCt_1 = C_0 * P[1][0];
E = R_angle + C_0 * PCt_0;
K_0 = PCt_0 / E;
K_1 = PCt_1 / E;
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)
H是測量系統的矩陣,為(1
1)
t_0 = PCt_0;
t_1 = C_0 * P[0][1];
P[0][0] -= K_0 * t_0;//后驗估計誤差協方差
P[0][1] -= K_0 * t_1;
P[1][0] -= K_1 * t_0;
P[1][1] -= K_1 * t_1;
到現在為止,我們已經得到了k狀態下最優的估算值X(k|k)。但是為了要另卡爾曼濾波器不斷的運行下去直到系統過程結束,我們還要更新k狀態下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
這個很好理解了~~I是單位矩陣不多說鳥~~
angle += K_0 * angle_err;//后驗估計
q_bias += K_1 * angle_err;//后驗估計
angle_dot = gyro_m-q_bias;//輸出值(后驗估計)的微分 = 角速度
現在我們有了現在狀態的預測結果,然后我們再收集現在狀態的測量值。結合預測值和測量值,我們可以得到現在狀態(k)的最優化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
觀察一下K_1計算過程,再聯系到協方差矩陣的性質就可以知道為什么角速度偏差量用P[1][0]算了~~
至于STM32上跑的速度,72M下這段代碼執行時間在0.5毫秒內,速度不是問題~~
-
傳感器
+關注
關注
2550文章
51035瀏覽量
753077 -
卡爾曼濾波
+關注
關注
3文章
165瀏覽量
24648 -
平衡小車
+關注
關注
1文章
39瀏覽量
12500
原文標題:平衡小車卡爾曼濾波算法
文章出處:【微信號:wujianying_danpianji,微信公眾號:單片機精講吳鑒鷹】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論