色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

機器學習算法可有效發現艱難梭菌感染,較早實現診斷

EdXK_AI_News ? 來源:未知 ? 作者:伍文輝 ? 2018-04-21 10:05 ? 次閱讀

美國麻省理工學院、哈佛大學醫學院附屬麻省總醫院和密歇根大學的科研人員開發出了一種機器學習算法可有效發現艱難梭菌感染,相比傳統方法可較早實現診斷。

每年都有近3萬美國人死于一種名為艱難梭菌(Clostridium difficile)的侵襲性腸道感染細菌。這種細菌對許多常用抗生素具有抗藥性,即使在能夠殺死通常可控制住這種細菌的有益細菌的抗生素治療中,這種細菌仍然能夠繁殖。麻省理工學院(MIT)計算機科學與人工智能實驗室(Computer Science and Artificial IntelligenceLaboratory,CSAIL)、麻省總醫院(Massachusetts GeneralHospital,MGH)和密歇根大學(University of Michigan,U-M)的科研人員現在已開發出研究型“機器學習”模型。這些模型專為各大機構量身定制,可比使用當前診斷方法更早地預測出患者感染艱難梭菌的可能性。

“盡管在預防艱難梭菌感染和確診后及早開始治療方面投入了大量精力,感染率仍在繼續上升,”麻省總醫院感染內科醫學博士、研究共同第一作者兼哈佛醫學院(Harvard Medical School)醫學助理教授埃麗卡·謝諾伊(EricaShenoy)說道。“我們需要更好的工具來幫助識別具有最高風險的患者,以便有針對性地進行預防和治療干預,從而減少進一步傳播并改善患者治療效果。”

作者們指出,之前的大部分艱難梭菌感染風險模型都設計為“一刀切”方法,并且僅包含幾個風險因素,因而用處有限。共同第一作者兼麻省理工學院計算機科學與人工智能實驗室外科學碩士瑪吉·馬卡爾(Maggie Makar)和密歇根大學計算機科學與工程專業研究生杰雷爾·歐(Jeeheh Oh)及其同事采用“大數據”方法分析了完整的電子健康檔案(Electronic Health Record,HER),以此預測患者在住院期間感染艱難梭菌的風險。他們的方法允許開發機構特定模型,可適應不同的患者人群、不同的電子健康檔案系統和特定于各家機構的因素。

“如果僅將數據注入一刀切模型中,患者人群、醫院布局、檢驗和治療方案,甚或醫務人員與電子健康檔案之間交互方式的機構差異都可能會導致基礎數據分布出現不同,并可能最終導致此類模型的表現差強人意,”密歇根大學計算機科學與工程助理教授兼研究共同第一作者詹娜·威恩斯(Jenna Wiens)博士說道。“為了緩和這些問題,我們采用醫院特定方法,訓練為每家機構量身定制的模型。”

科研人員借助其基于機器學習技術的模型,分別以兩年和六年為期限,對在麻省總醫院或密歇根大學醫院(Michigan Medicine,密歇根大學學術醫學中心)入院的257,000名患者的電子健康檔案中去除了身份識別信息的數據進行分析。這些數據包括每名患者的人口統計數據和病史、其入院細節和每日住院情況,以及患者被艱難梭菌感染的可能性。該模型針對每名患者生成每日風險評分,當超過設定閾值時,患者會被歸類為高風險患者。

整體而言,這些模型在預測最終會被診斷為感染了艱難梭菌的患者方面非常成功。在采集診斷樣本前至少五天,這些模型就已經對其中半數感染患者進行了準確預測,這樣一來,可集中對具有較高風險的患者進行靶向抗菌干預。如果在前瞻性研究中得到證實,風險預測評分可為艱難梭菌的早期篩查提供指導。對于在病程早期確診的患者,啟動治療可抑制疾病嚴重程度加深,且確診的艱難梭菌感染患者可得到隔離并能啟動接觸預防措施來防止感染向其他患者傳播。

研究團隊已在網上免費提供算法代碼(https://gitlab.eecs.umich.edu/jeeheh/ICHE2018_CDIRiskPrediction),以供其他人查看及針對各自所在機構修改。謝諾伊指出,探索將類似算法應用于所在機構的醫療設施需要召集合適的本地主題專家并驗證相關模型在其機構中的表現。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 機器學習
    +關注

    關注

    66

    文章

    8425

    瀏覽量

    132769

原文標題:機器學習算法可有效發現艱難梭菌感染

文章出處:【微信號:AI_News,微信公眾號:人工智能快報】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    華為云 Flexus X 實例部署安裝 Jupyter Notebook,學習 AI,機器學習算法

    前言 由于本人最近在學習一些機器算法,AI 算法的知識,需要搭建一個學習環境,所以就在最近購買的華為云 Flexus X 實例上安裝了
    的頭像 發表于 01-02 13:43 ?99次閱讀
    華為云 Flexus X 實例部署安裝 Jupyter Notebook,<b class='flag-5'>學習</b> AI,<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>

    傳統機器學習方法和應用指導

    在上一篇文章中,我們介紹了機器學習的關鍵概念術語。在本文中,我們會介紹傳統機器學習的基礎知識和多種算法特征,供各位老師選擇。 01 傳統
    的頭像 發表于 12-30 09:16 ?258次閱讀
    傳統<b class='flag-5'>機器</b><b class='flag-5'>學習</b>方法和應用指導

    設備智能運維真正實現“智能”了嗎?

    智能運維的核心在于利用先進的數據分析和機器學習技術,實現設備的預測性維護、故障診斷及性能優化,以保證系統的穩定性,實現降本增效。要判斷設備智
    的頭像 發表于 11-28 10:29 ?159次閱讀
    設備智能運維真正<b class='flag-5'>實現</b>“智能”了嗎?

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為一種專門為深度
    的頭像 發表于 11-15 09:19 ?514次閱讀

    【每天學點AI】KNN算法:簡單有效機器學習分類器

    過程,其實就是一個簡單的分類問題,而KNN(K-NearestNeighbors)算法正是模仿這種人類決策過程的機器學習算法。|什么是KNN?KNN(K-NearestNeighbo
    的頭像 發表于 10-31 14:09 ?367次閱讀
    【每天學點AI】KNN<b class='flag-5'>算法</b>:簡單<b class='flag-5'>有效</b>的<b class='flag-5'>機器</b><b class='flag-5'>學習</b>分類器

    LIBS結合機器學習算法的江西名優春茶采收期鑒別

    以廬山云霧茶和狗牯腦茶的明前茶、雨前茶為對象,研究激光誘導擊穿光譜結合機器學習的茶葉鑒別方法。將茶葉茶,水數據融合可有效鑒別春茶采收期,且數據融合后表現出更好的穩定性和魯棒性,LIBS結合機器
    的頭像 發表于 10-22 18:05 ?265次閱讀
    LIBS結合<b class='flag-5'>機器</b><b class='flag-5'>學習</b><b class='flag-5'>算法</b>的江西名優春茶采收期鑒別

    基于機器學習的IWR6843AOP跌倒和姿態檢測實現

    電子發燒友網站提供《基于機器學習的IWR6843AOP跌倒和姿態檢測實現.pdf》資料免費下載
    發表于 09-03 10:02 ?1次下載
    基于<b class='flag-5'>機器</b><b class='flag-5'>學習</b>的IWR6843AOP跌倒和姿態檢測<b class='flag-5'>實現</b>

    利用Matlab函數實現深度學習算法

    在Matlab中實現深度學習算法是一個復雜但強大的過程,可以應用于各種領域,如圖像識別、自然語言處理、時間序列預測等。這里,我將概述一個基本的流程,包括環境設置、數據準備、模型設計、訓練過程、以及測試和評估,并提供一個基于Mat
    的頭像 發表于 07-14 14:21 ?2309次閱讀

    機器學習算法原理詳解

    機器學習作為人工智能的一個重要分支,其目標是通過讓計算機自動從數據中學習并改進其性能,而無需進行明確的編程。本文將深入解讀幾種常見的機器學習
    的頭像 發表于 07-02 11:25 ?1135次閱讀

    機器學習的經典算法與應用

    關于數據機器學習就是喂入算法和數據,讓算法從數據中尋找一種相應的關系。Iris鳶尾花數據集是一個經典數據集,在統計學習
    的頭像 發表于 06-27 08:27 ?1679次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>的經典<b class='flag-5'>算法</b>與應用

    深度學習與度量學習融合的綜述

    如今,機器學習的應用廣泛,包括人臉識別、醫療診斷等,為復雜問題和大量數據提供解決方案。機器學習算法
    發表于 04-24 09:49 ?442次閱讀
    深度<b class='flag-5'>學習</b>與度量<b class='flag-5'>學習</b>融合的綜述

    機器學習怎么進入人工智能

    ,人工智能已成為一個熱門領域,涉及到多個行業和領域,例如語音識別、機器翻譯、圖像識別等。 在編程中進行人工智能的關鍵是使用機器學習算法,這是一類基于樣本數據和模型訓練來進行預測和判斷的
    的頭像 發表于 04-04 08:41 ?345次閱讀

    機器學習8大調參技巧

    今天給大家一篇關于機器學習調參技巧的文章。超參數調優是機器學習例程中的基本步驟之一。該方法也稱為超參數優化,需要搜索超參數的最佳配置以實現
    的頭像 發表于 03-23 08:26 ?641次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>8大調參技巧

    AI算法的本質是模擬人類智能,讓機器實現智能化

    電子發燒友網報道(文/李彎彎)AI算法是人工智能領域中使用的算法,用于模擬、延伸和擴展人的智能。這些算法可以通過機器學習、深度
    的頭像 發表于 02-07 00:07 ?5854次閱讀

    如何驗證Xmc4700s ADC診斷測試是否有效

    問題陳述: 我正在嘗試驗證 Xmc4700s ADC 診斷測試是否有效。 我正在嘗試驗證兩個測試: 下拉診斷 上拉診斷 程序: 為了測試下拉測試, 在 3V3 和有問題的 adc
    發表于 01-23 07:46
    主站蜘蛛池模板: 69xx欧美| 国产精品久久久久影院色老大| 色欲国产麻豆精品AV免费| 欧美18精品久久久无码午夜福利| 欧美另类jizzhd| 色mimi| 午夜福利免费体检区| 亚洲黄色高清| 一个人高清在线观看日本免费 | 国产99RE在线观看69热| 国产精品欧美亚洲| 含羞草免费完整视频在线观看| 久久精品中文字幕有码日本| 免费三级黄色| 四房色播手机版| 亚洲综合视频| jk制服喷水| 国产精品看高国产精品不卡| 精品福利一区| 欧美精品一区二区三区四区| 少妇无码吹潮久久精品AV网站 | 久青草国产97香蕉在线视频| 欧美乱子YELLOWVIDEO| 忘忧草在线影院www日本| 伊人久久亚洲综合天堂| jyzzjyzzz视频国产在线观看 | 在线视频一区二区三区在线播放| h版动漫在线播放的网站| 国产精品一区二区20P| 久久性生大片免费观看性| 日本动漫henta videos| 亚洲精品久久无码AV片WWW| 99re久久热在这里精品| 国产精品久久人妻无码网站一区无 | 我半夜摸妺妺的奶C了她软件| 在线观看亚洲免费视频| 吃奶啃奶玩乳漫画| 九九免费的视频| 人人碰国产免费线观看| 亚洲色欲H网在线观看| YY600800新视觉理论私人|