色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

語音識別任務中除了模型以外的可以提升性能的技巧

wpl4_DeepLearni ? 來源:未知 ? 作者:胡薇 ? 2018-04-23 17:18 ? 次閱讀

端對端語音識別改進的規(guī)則技巧

對于端對端模型來說,通過數(shù)據(jù)增強和Dropout的方法可以提高模型的性能。在語音識別中也是如此,之前,我公眾號沒有寫過關于語音識別任務的數(shù)據(jù)增強的技巧,最近做了大規(guī)模的語音識別實踐發(fā)現(xiàn),數(shù)據(jù)增強對于小數(shù)據(jù)集而言簡直就是雪中送炭,當然,如果你擁有大體量的數(shù)萬小時的語音數(shù)據(jù)庫,而且又能囊括全國各地不同口音風格,那么數(shù)據(jù)增強理論上也能起到錦上添花的作用。今天基于Salesforce Research的這篇文章以及自己平時的實踐經(jīng)驗,來分享一下語音識別任務中除了模型以外的可以提升性能的技巧。

這篇論文中提到,通過對音頻的速度、音調(diào)、音量、時間對齊進行微小的擾動,以及通過增加高斯白噪聲來對音頻進行改動,同時,文章也探討了在每一層神經(jīng)網(wǎng)絡上采用dropout所帶來的效果。實驗結(jié)果表明,通過將數(shù)據(jù)增強技術(shù)與dropout聯(lián)合使用,可以將語音識別模型的性能在WSJ數(shù)據(jù)庫上和LibriSpeech數(shù)據(jù)庫上相比baseline系統(tǒng)提高20%以上,從結(jié)果上看,這些規(guī)則化技巧對語音識別的性能改進有很大的幫助。我們先看一下作者基于什么模型來實踐這些數(shù)據(jù)增強的技巧。

本文使用的端對端模型非常接近于百度提出的Deep Speech2 (DS2),如上圖所示,原始特征數(shù)據(jù)首先經(jīng)過一個較大卷積核的卷積層,卷積核較大的好處就是對原始特征進行降維,降維以后通過5個殘差連接區(qū),而每一個殘差區(qū)都是由批歸一化層、channel-wise卷積層和1×1的卷積層構(gòu)成,并通過relu激活函數(shù),緊接著連上4個雙向GRU網(wǎng)絡,最終通過全連接層得到目標概率分布,并采取端對端的CTC損失函數(shù)作為目標函數(shù),使用隨機梯度下降算法來進行優(yōu)化。這里相比DS2所做的創(chuàng)新主要是channel-wise可分離的卷積層,其實就是depth-wise可分離卷積層,它相比常規(guī)的卷積具有性能好、參數(shù)減少的優(yōu)勢,它們在參數(shù)數(shù)量上的區(qū)別可以通過下面的例子看得出來(具體關于可分離卷積的介紹,可以搜索xception這篇文章):

假設現(xiàn)在要做一個卷積,輸入深度是128,輸出深度是256;常規(guī)的操作使用卷積核3×3進行卷積,那么參數(shù)數(shù)目為128×3×3×256=294912;depth-wise可分離卷積的操作是設置depth multiplier=2得到深度為2×128的中間層,再經(jīng)過1×1的卷積層降維到深度為256,參數(shù)數(shù)目為128×3×3×2+128×2×1×1×256=67840,可以看到相比常規(guī)卷積,參數(shù)減少了77%;

除了使用了depth-wise可分離卷積層以外,殘差連接以及在每一層上都采取了批歸一化的技巧對訓練有促進作用,整個網(wǎng)絡共有約500萬個參數(shù)。參數(shù)太大就容易出現(xiàn)過擬合的問題,為了避免過擬合,作者嘗試探索了數(shù)據(jù)增強和dropout兩種技巧來提升系統(tǒng)的性能。

1. 數(shù)據(jù)增強

在此之前,Hinton曾經(jīng)提出使用Vocal Tract Length Perturbation (VTLP)的方法來提升語音識別的性能,具體的做法就是在訓練階段對每一個音頻的頻譜特征施加一個隨機的扭曲因子,通過這種做法Hinton實現(xiàn)了在TIMIT小數(shù)據(jù)集上的測試集表現(xiàn)提升了0.65%,VTLP是基于特征層面所做的數(shù)據(jù)增強技巧,不過后來也有人發(fā)現(xiàn)通過改變原始音頻的速度所帶來的性能提升要比VTLP好。但是音頻速度的快慢實際上會影響到音調(diào)(pitch),所以提高了音頻的速度必然也就增大了音頻的音調(diào)。反過來也是,降低了音頻的速度就會使得音頻的音調(diào)變小。所以,僅僅通過調(diào)節(jié)速度的方法就不能產(chǎn)生速度快同時音調(diào)低的音頻,這就使得音頻的多樣性有所降低,對語音識別系統(tǒng)的性能提升有限。作者在本文中希望能夠通過數(shù)據(jù)增強來豐富音頻的變化,提升數(shù)據(jù)的數(shù)量和多樣化,于是作者采取將音頻的速度通過兩個單獨的變量來控制,它們分別是tempo和pitch,也就是節(jié)奏和音高,對音頻的節(jié)奏和音高的調(diào)節(jié)可以通過語音的瑞士軍刀——SOX軟件來完成。

除了改變tempo和pitch以外,作者還添加了高斯白噪聲、改變音頻的音量以及隨機對部分原始音頻的采樣點進行扭曲操作。

2. dropout

dropout是Hinton提出來的一種防止深度神經(jīng)網(wǎng)絡出現(xiàn)過擬合的技巧,它的做法是在訓練神經(jīng)網(wǎng)絡的時候隨機地讓某些神經(jīng)元的輸入變?yōu)?,公式如下所示,通過生成一個概率為1-p的伯努利分布再與神經(jīng)元的輸入進行點乘,即可得到dropout以后的輸入;而在推理階段,我們只需要對輸入乘以伯努利分布的期望值1-p即可。dropout對于前向神經(jīng)網(wǎng)絡作用很明顯,但是應用到循環(huán)神經(jīng)網(wǎng)絡中的時候,很難取得較好的效果。

作者在本文中采取的dropout是不隨時間變化的,即對于一個序列的不同時刻,產(chǎn)生dropout的伯努利分布是共享的,而在推理階段,仍然是乘以伯努利分布的期望值1-p。作者在卷積層和循環(huán)層都是采取了這個變種的dropout,而在全連接層則是采取了標準的dropout。

3. 實驗細節(jié)

作者采取的數(shù)據(jù)集是LibriSpeech和WSJ,輸入到模型的特征是語音的頻譜圖(spectrogram),以20ms為一幀,步長設為10ms。同時,作者對特征做了兩個層次的歸一化,分別是把頻譜圖歸一化成均值為0標準差為1的分布,以及對每一個特征維度進行同樣的歸一化,不過這個特征維度的歸一化是基于整體訓練集的統(tǒng)計來做的。

數(shù)據(jù)增強部分,作者基于tempo的增強參數(shù)是取自(0.7, 1.3)的均勻分布,基于pitch的增強參數(shù)是取自(-500, 500)的均勻分布,添加高斯白噪聲的時候?qū)⑿旁氡瓤刂圃?0-15分貝,同時在調(diào)整速度方面,作者分別使用了0.9,1.0和1.1作為調(diào)整的系數(shù)。綜合上面所有數(shù)據(jù)增強技巧,如下圖所示,模型的性能相比沒有這些技巧的baseline提高了20%。

dropout同樣提升了模型的性能,dropout概率作者對數(shù)據(jù)設置了0.1,對卷積層設置了0.2,對所有的循環(huán)層和全連接層設置了0.3,通過dropout,模型性能提高了22.43%,結(jié)合dropout和數(shù)據(jù)增強,模型整體性能提高了23.39%。

4. 總結(jié)

本文應該是對語音識別中的數(shù)據(jù)增強和規(guī)則化技巧做了總結(jié),雖然實驗用的數(shù)據(jù)集是時長比較短的數(shù)據(jù)集,但是這些數(shù)據(jù)集對于我們部署一個實際的語音識別系統(tǒng)也很重要。對于中文普通話語音識別而言,不論是不同人說話的語速、語調(diào),還是不同地方的人說普通話的口音,這些導致語音識別的難度非常大,如果想去采集各個地方不同人所說的普通話語料,對于小公司或者小團隊而言,是非常不現(xiàn)實的一件事情。所以,如何基于有限的普通話語料去使用數(shù)據(jù)增強算法來人工構(gòu)建一個可以模擬全國各個地方不同口音分布的強大語料是一個不得不面對的實際難題,而解決了這個難題實際上也就能極大程度地提升語音識別的魯棒性。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 端對端
    +關注

    關注

    0

    文章

    3

    瀏覽量

    7856
  • 語音識別
    +關注

    關注

    38

    文章

    1739

    瀏覽量

    112635

原文標題:改進語音識別性能的數(shù)據(jù)增強技巧

文章出處:【微信號:DeepLearningDigest,微信公眾號:深度學習每日摘要】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于網(wǎng)絡性能的VoIP語音質(zhì)量評價模型

    【作者】:張秀武;雷為民;【來源】:《小型微型計算機系統(tǒng)》2010年03期【摘要】:在VoIP應用,為了實現(xiàn)服務質(zhì)量的監(jiān)測和路徑切換,通常需要測量路徑的網(wǎng)絡性能,并將網(wǎng)絡性能映射到語音
    發(fā)表于 04-24 09:26

    基于labview的語音識別

    的語法網(wǎng)絡或由統(tǒng)計方法構(gòu)成的語言模型,語言處理可以進行語法、語義分析。對小詞表語音識別系統(tǒng),往往不需要語言處理部分。聲學模型
    發(fā)表于 03-10 22:00

    基于MSP432 MCU的語音識別設計概述

    (一個被稱為注冊的任務)。再說一次已注冊的短語。識別器將用它來制作一個更好的模型,以提升性能(一個被稱為更新的
    發(fā)表于 07-30 04:45

    詳解語音識別技術(shù)原理

    的概率4. 5. 語言概率:根據(jù)語言統(tǒng)計規(guī)律得到的概率6. 其中,前兩種概率從聲學模型獲取,最后一種概率從語言模型獲取。語言模型是使用大
    發(fā)表于 05-30 07:41

    離線語音識別及控制是怎樣的技術(shù)?

    了對網(wǎng)絡依賴的程度。  二、離線語音識別技術(shù)的優(yōu)勢  離線語音識別的優(yōu)勢主要體現(xiàn)在以下幾個方面:  1. 隱私保護:離線語音
    發(fā)表于 11-24 17:41

    基于PAD情緒模型的情感語音識別

    基于PAD情緒模型的情感語音識別_宋靜
    發(fā)表于 01-08 14:47 ?0次下載

    阿里開源自主研發(fā)AI語音識別模型

    阿里巴巴達摩院機器智能實驗室語音識別團隊,推出了新一代語音識別模型——DFSMN,不僅被谷歌等國外巨頭在論文中重點引用,更將全球
    的頭像 發(fā)表于 06-10 10:08 ?5692次閱讀

    語音處理,通過使用大數(shù)據(jù)可以輕松解決很多任務

    語音處理,通過使用大量數(shù)據(jù)可以輕松解決很多任務。例如,將語音轉(zhuǎn)換為文本的 自動語音
    的頭像 發(fā)表于 09-23 17:56 ?2288次閱讀

    三星無聲語音助手專利解密:可以完成精準語音識別任務

    【嘉德點評】三星發(fā)明的可以完成精準語音識別任務語音識別助手,在交互時無需發(fā)出
    的頭像 發(fā)表于 02-12 15:03 ?1547次閱讀
    三星無聲<b class='flag-5'>語音</b>助手專利解密:<b class='flag-5'>可以</b>完成精準<b class='flag-5'>語音</b><b class='flag-5'>識別</b><b class='flag-5'>任務</b>

    關于多任務學習如何提升模型性能與原則

    提升模型性能的方法有很多,除了提出過硬的方法外,通過把神經(jīng)網(wǎng)絡加深加寬(深度學習),增加數(shù)據(jù)集數(shù)目(預訓練模型)和增加目標函數(shù)(多
    的頭像 發(fā)表于 03-21 11:54 ?2835次閱讀

    研討會預告 | 使用 Transducer 模型優(yōu)化語音識別結(jié)果

    ,一是缺乏語言模型建模能力,不能整合語言模型進行聯(lián)合優(yōu)化,二是 CTC 有一個不合理的假設:標簽相互獨立,這個基本假設與語音識別任務之間存在
    的頭像 發(fā)表于 03-10 22:00 ?449次閱讀

    重塑翻譯與識別技術(shù):開源語音識別模型Whisper的編譯優(yōu)化與部署

    模型介紹Whisper模型是一個由OpenAI團隊開發(fā)的通用語音識別模型。它的訓練基于大量不同的音頻數(shù)據(jù)集,是一個多
    的頭像 發(fā)表于 01-06 08:33 ?3649次閱讀
    重塑翻譯與<b class='flag-5'>識別</b>技術(shù):開源<b class='flag-5'>語音</b><b class='flag-5'>識別</b><b class='flag-5'>模型</b>Whisper的編譯優(yōu)化與部署

    語音數(shù)據(jù)集:智能駕駛車內(nèi)語音識別技術(shù)的基石

    的發(fā)展趨勢。 二、語音數(shù)據(jù)集在智能駕駛的應用 訓練與優(yōu)化:高質(zhì)量的語音數(shù)據(jù)集是訓練和優(yōu)化語音識別模型
    的頭像 發(fā)表于 01-31 16:07 ?543次閱讀

    Transformer模型語音識別語音生成的應用優(yōu)勢

    自然語言處理、語音識別語音生成等多個領域展現(xiàn)出強大的潛力和廣泛的應用前景。本文將從Transformer模型的基本原理出發(fā),深入探討其在語音
    的頭像 發(fā)表于 07-03 18:24 ?1083次閱讀

    語音識別技術(shù)的應用與發(fā)展

    語音識別技術(shù)的發(fā)展可以追溯到20世紀50年代,但直到近年來,隨著計算能力的提升和機器學習技術(shù)的進步,這項技術(shù)才真正成熟并廣泛應用于各個領域。語音
    的頭像 發(fā)表于 11-26 09:20 ?399次閱讀
    主站蜘蛛池模板: 亚洲视频黄| 亚洲宅男天堂a在线| 男男腐文污高干嗯啊快点1V1| 国产一区二区高清| 国产精品女上位好爽在线短片| www.x日本| 成年美女黄网站色app| 99视频在线观看免费| 99久久精品国产亚洲AV| 欧美肥胖女人bbwbbw视频| 日本xxxxxxxxx老师59| 亚洲国产精品无码2019| 最近的中文字幕2019国语| a级精品九九九大片免费看| 国产高清国内精品福利色噜噜| 精品国产高清自在线看| 男人插曲女人下生免费大全| 日本一区不卡在线播放视频免费| 亚洲精品高清视频| 99九九精品视频| 国产亚洲AV精品无码麻豆 | 97国内精品久久久久久久影视| xxxxxl荷兰| 寂寞夜晚在线视频观看| 强奷乱码中文字幕熟女免费| 亚洲成色爱我久久| 91精品一区二区综合在线| 国产精品免费观看视频| 久久亚洲成a人片| 色偷偷成人网免费视频男人的天堂| 亚洲欧美一区二区三区导航| 97人妻精品全国免费视频| 国产精品爆乳尤物99精品| 噜妇插内射精品| 性xxxx18公交车| 99久久伊人一区二区yy5o99 | 国产国产乱老熟女视频网站97| 久久综合九色| 亚洲 成人网| 成人免费在线观看| 久久久乱码精品亚洲日韩|