自動駕駛也屬于AI范疇,為什么遲遲不能落地呢?今天就圍繞這個問題延伸下去感知、決策、控制是自動駕駛的三個技術環節,但真正的難點在哪呢?。。
技術的車輪滾滾向前,每隔一段時間當前技術就會被新技術更新或迭代。2017年AlphaGo戰勝冠軍棋手柯潔,并橫掃了整個圍棋界選手,讓人類為之震驚,也拉開了人工智能(AI)深度學習時代的序幕。然而自動駕駛也屬于AI范疇,為什么遲遲不能落地呢?今天就圍繞這個問題延伸下去。
感知、決策、控制是自動駕駛的三個技術環節,但真正的難點在哪呢?
感知既是對周圍環境的了解,如同駕駛員的眼睛和耳朵。感知的設備無非是攝像頭、聲吶、各種各樣的雷達,但客觀的講,攝像頭三維空間效果差、雨雪惡略天氣能見度低;毫米波雷達穿透能力弱;激光雷達無法識別顏色、文字且造價高昂,或多或少都存在缺陷。而多種感知設備組合則成為最優的解決方案,彌補了之間的不足,所以各個車廠的感知設備也大同小異,目前主要的難點是如何壓縮成本。
自動駕駛汽車頂的激光雷達
控制是對車輛的掌控,如同駕駛員的手腳。車輛的加速、剎車、轉向等皆屬于控制范疇,然而這些控制沒有太高的技術要求,定速巡航、自動剎車、自適應巡航、自動泊車等功能已經在車輛控制方面積累了相當多的經驗,所以自動駕駛的難點并不在控制。
特斯拉自動駕駛儀表顯示
決策是通過感知收到周圍的信息,計算出最優的方案,把信號傳送給控制機構,如同駕駛員的大腦。決策環節承上啟下,是決定汽車行駛的關鍵,所以自動駕駛的重點和難點皆聚于此!
*數據積累
圍棋人機大戰轟動一時,但AlphaGo在學習圍棋技能時,通過大量數據分析了3000多萬步職業棋手棋譜,并通過增強學習的方法自我博弈,尋找比更優的棋路,才取得了傲人的成績。而自動駕駛汽車也需要海量里程的實際路測,2016年美國智庫蘭德公司給出了一個準確的答案:路測里程需達到110億英里。大量的路測試驗以及后期分類標定、數據處理,尚且存在著許多不確定因素。如果各個車廠能把自己的數據共享,可能會加速自動駕駛的落地,但很顯然核心數據是保密的!
HERE地圖上線云導航服務 加強自動駕駛
*邏輯難題
在現實生活中,路況千變萬化非常復雜,自動駕駛稍有不慎就會造成人員傷亡。除了海量的數據分析及預設的決策依據,如果想要在非鋪裝路面或特殊環境保持高精度自動駕駛,還需要AI在自動駕駛領域的進一步發展與利用。
雖然交通法規日益健全,但全世界范圍內依然存在著不遵守交通規則的人、自行車。有個很經典的事故假設:一輛快速行駛的自動駕駛汽車,但前方路口有多人違反信號燈橫穿馬路,僅有一人在路旁等候,這時就需要自動駕駛去決策,是直行剎車撞多人還是轉向剎車撞一人!這不僅僅是交通法規、法律的范疇,還有道德、人性的因素包含其中,自動駕駛它能懂嗎?
深度學習的概念源于人工神經網絡的研究
*算法難題
在既定的決策范圍內,更多的樣本數據是通過深度學習去理解、分析的。深度學習的概念源于人工神經網絡的研究,它通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。
深度學習已經席卷了AI領域,但深度學習并不是萬能的!深度學習沒有分析能力,不知道原因也無法預測,它基本上取決與樣本以及所要求輸出的特征值。很顯然,對于高精度自動駕駛來說,深度學習需要更理性的決策!
-
人工智能
+關注
關注
1800文章
48083瀏覽量
242164 -
自動駕駛
+關注
關注
788文章
14002瀏覽量
167714 -
深度學習
+關注
關注
73文章
5527瀏覽量
121879
原文標題:自動駕駛為何遲遲不能落地,絆腳石到底是誰?
文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
如何實現自動駕駛規控算法的仿真驗證

標貝科技:自動駕駛中的數據標注類別分享

標貝科技:自動駕駛中的數據標注類別分享

自動駕駛中常提的SLAM到底是個啥?



智能網聯是否是自動駕駛落地的必要條件?
FPGA在自動駕駛領域有哪些優勢?
FPGA在自動駕駛領域有哪些應用?
標貝數據采集標注在自動駕駛場景中落地應用實例

評論