色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

車載芯片的發(fā)展趨勢(shì)是什么?GPU和ASIC的發(fā)展方向與應(yīng)用的概述

cMdW_icsmart ? 來源:未知 ? 作者:易水寒 ? 2018-07-29 11:49 ? 次閱讀

行業(yè)觀點(diǎn):

汽車電子發(fā)展初期以分布式 ECU 架構(gòu)為主流,芯片傳感器一一對(duì)應(yīng),隨著汽車電子化程度提升,傳感器增多、線路復(fù)雜度增大,中心化架構(gòu) DCU、MDC 逐步成為了發(fā)展趨勢(shì);

隨著汽車輔助駕駛功能滲透率越來越高,傳統(tǒng) CPU 算力不足,難以滿足處理視頻、圖片等非結(jié)構(gòu)化數(shù)據(jù)的需求,而 GPU 同時(shí)處理大量簡(jiǎn)單計(jì)算任務(wù)的特性在自動(dòng)駕駛領(lǐng)域取代 CPU 成為了主流方案;

ADAS向自動(dòng)駕駛進(jìn)化的過程中,激光雷達(dá)點(diǎn)云數(shù)據(jù)以及大量傳感器加入到系統(tǒng)中,需要接受、分析、處理的信號(hào)大量且復(fù)雜,定制化的ASIC 芯片可在相對(duì)低水平的能耗下,將車載信息的數(shù)據(jù)處理速度提升更快,并且性能、能耗和大規(guī)模量產(chǎn)成本均顯著優(yōu)于 GPU 和 FPGA,隨著自動(dòng)駕駛的定制化需求提升,ASIC 專用芯片將成為主流。

目前出貨量最大的駕駛輔助芯片廠商 Mobileye、Nvidia 形成“雙雄爭(zhēng)霸”局面,Xilinx 則在 FPGA 的路線上進(jìn)軍,Google、地平線、寒武紀(jì)在向?qū)S妙I(lǐng)域 AI 芯片發(fā)力,國(guó)內(nèi)四維圖新、全志科技等也在自動(dòng)駕駛芯片領(lǐng)域積極布局。

Mobileye 的核心優(yōu)勢(shì)是EyeQ 系列芯片,可以處理攝像頭、雷達(dá)等多種傳感器融合產(chǎn)生的大量數(shù)據(jù),在 L1-L3 自動(dòng)駕駛領(lǐng)域具有極大的話語權(quán),目前出貨量超過了 2700 萬顆;

NVIDIA 在 GPU 領(lǐng)域具有絕對(duì)的領(lǐng)導(dǎo)地位,芯片算力強(qiáng)大且具備很強(qiáng)的靈活性,但功耗高、成本高,AI機(jī)器學(xué)習(xí)并不太適合 GPU的應(yīng)用;

此外 Google、地平線、寒武紀(jì)、四維圖新等更聚焦在針對(duì)不同場(chǎng)景下的具體應(yīng)用,芯片設(shè)計(jì)也開始增加硬件的深度學(xué)習(xí)設(shè)計(jì),自動(dòng)駕駛上 AI 的應(yīng)用已經(jīng)成為未來的趨勢(shì)。

一、車載芯片的發(fā)展趨勢(shì)(CPU-GPU-FPGA-ASIC)

過去汽車電子芯片以與傳感器一一對(duì)應(yīng)的電子控制單元(ECU)為主,主

要分布與發(fā)動(dòng)機(jī)等核心部件上。隨著汽車智能化的發(fā)展,汽車傳感器越來

越多,傳統(tǒng)的分布式架構(gòu)逐漸落后,由中心化架構(gòu) DCU、MDC 逐步替代。

隨著人工智能發(fā)展,汽車智能化形成趨勢(shì),目前輔助駕駛功能滲透率越來越高,這些功能的實(shí)現(xiàn)需借助于攝像頭、雷達(dá)等新增的傳感器數(shù)據(jù),其中視頻(多幀圖像)的處理需要大量并行計(jì)算,傳統(tǒng) CPU 算力不足,這方面性能強(qiáng)大的 GPU 替代了 CPU。再加上輔助駕駛算法需要的訓(xùn)練過程, GPU+FPGA 成為目前主流的解決方案。

著眼未來,自動(dòng)駕駛也將逐步完善,屆時(shí)又會(huì)加入激光雷達(dá)的點(diǎn)云(三維位置數(shù)據(jù))數(shù)據(jù)以及更多的攝像頭和雷達(dá)傳感器,GPU 也難以勝任, ASIC 性能、能耗和大規(guī)模量產(chǎn)成本均顯著優(yōu)于 GPU 和 FPGA,定制化的ASIC 芯片可在相對(duì)低水平的能耗下,將車載信息的數(shù)據(jù)處理速度提升更快,隨著自動(dòng)駕駛的定制化需求提升,ASIC 專用芯片將成為主流。本文以如上順序梳理車載芯片發(fā)展歷程,探討未來發(fā)展方向。

二、車載芯片的過去—以 CPU 為核心的 ECU

2.1 ECU 的核心 CPU

ECU(Electronic Control Unit)是電子控制單元,也稱“行車電腦”,是汽車專用微機(jī)控制器。一般 ECU 由 CPU、存儲(chǔ)器(ROMRAM)、輸入/ 輸出接口(I/O)、模數(shù)轉(zhuǎn)換器(A/D)以及整形、驅(qū)動(dòng)等大規(guī)模集成電路組成。

ECU 的工作過程就是 CPU 接收到各個(gè)傳感器的信號(hào)后轉(zhuǎn)化為數(shù)據(jù),并由 Program區(qū)域的程序?qū)?Data 區(qū)域的數(shù)據(jù)圖表調(diào)用來進(jìn)行數(shù)據(jù)處理,從而得出具體驅(qū)動(dòng)數(shù)據(jù),并通過 CPU針腳傳送到相關(guān)驅(qū)動(dòng)芯片,驅(qū)動(dòng)芯片再通過相應(yīng)的周邊電路產(chǎn)生驅(qū)動(dòng)信號(hào),用來驅(qū)動(dòng)驅(qū)動(dòng)器。即傳感器信號(hào)——傳感器數(shù)據(jù)——驅(qū)動(dòng)數(shù)據(jù)——驅(qū)動(dòng)信號(hào)這樣一個(gè)完整工作流程。

2.2 分布式架構(gòu)向多域控制器發(fā)展

汽車電子發(fā)展的初期階段,ECU 主要是用于控制發(fā)動(dòng)機(jī)工作,只有汽車發(fā)動(dòng)機(jī)的排氣管(氧傳感器)、氣缸(爆震傳感器)、水溫傳感器等核心部件才會(huì)放置傳感器,由于傳感器數(shù)量較少,為保證傳感器-ECU-控制器回路的穩(wěn)定性,ECU 與傳感器一一對(duì)應(yīng)的分布式架構(gòu)是汽車電子的典型模式。

后來隨著車輛的電子化程度逐漸提高,ECU 占領(lǐng)了整個(gè)汽車,從防抱死制動(dòng)系統(tǒng)、4 輪驅(qū)動(dòng)系統(tǒng)、電控自動(dòng)變速器、主動(dòng)懸架系統(tǒng)、安全氣囊系統(tǒng),到現(xiàn)在逐漸延伸到了車身各類安全、網(wǎng)絡(luò)、娛樂、傳感控制系統(tǒng)等。

隨著汽車電子化的發(fā)展,車載傳感器數(shù)量越來越多,傳感器與 ECU 一一對(duì)應(yīng)使得車輛整體性下降,線路復(fù)雜性也急劇增加,此時(shí) DCU(域控制器)和MDC(多域控制器)等更強(qiáng)大的中心化架構(gòu)逐步替代了分布式架構(gòu)。

域控制器(Domain Control Unit)的概念最早是由以博世,大陸,德爾福為首的 Tier1 提出,是為了解決信息安全,以及 ECU 瓶頸的問題。根據(jù)汽車電子部件功能將整車劃分為動(dòng)力總成,車輛安全,車身電子,智能座艙和智能駕駛等幾個(gè)域,利用處理能力更強(qiáng)的多核 CPU/GPU芯片相對(duì)集中的去控制每個(gè)域,以取代目前分布式汽車電子電氣架構(gòu)。

而進(jìn)入自動(dòng)駕駛時(shí)代,控制器需要接受、分析、處理的信號(hào)大量且復(fù)雜,原有的一個(gè)功能對(duì)應(yīng)一個(gè) ECU 的分布式計(jì)算架構(gòu)或者單一分模塊的域控制器已經(jīng)無法適應(yīng)需求,比如攝像頭、毫米波雷達(dá)、激光雷達(dá)乃至 GPS 和輪速傳感器的數(shù)據(jù)都要在一個(gè)計(jì)算中心內(nèi)進(jìn)行處理以保證輸出結(jié)果的對(duì)整車自動(dòng)駕駛最優(yōu)。

因此,自動(dòng)駕駛車輛的各種數(shù)據(jù)聚集、融合處理,從而為自動(dòng)駕駛的路徑規(guī)劃和駕駛決策提供支持的多域控制器將會(huì)是發(fā)展的趨勢(shì),奧迪與德爾福共同開發(fā)的 zFAS,即是通過一塊 ECU,能夠接入不同傳感器的信號(hào)并進(jìn)行對(duì)信號(hào)進(jìn)行分析和處理,最終發(fā)出控制命令。

三、車載芯片的現(xiàn)在—以 GPU 為核心的智能輔助駕駛芯片

人工智能的發(fā)展也帶動(dòng)了汽車智能化發(fā)展,過去的以 CPU 為核心的處理器越來越難以滿足處理視頻、圖片等非結(jié)構(gòu)化數(shù)據(jù)的需求,同時(shí)處理器也需要整合雷達(dá)、視頻等多路數(shù)據(jù),這些都對(duì)車載處理器的并行計(jì)算效率提出更高要求,而 GPU 同時(shí)處理大量簡(jiǎn)單計(jì)算任務(wù)的特性在自動(dòng)駕駛領(lǐng)域取代CPU成為了主流方案。

3.1 GPU Vs. CPU

CPU 的核心數(shù)量只有幾個(gè)(不超過兩位數(shù)),每個(gè)核都有足夠大的緩存和足夠多的數(shù)字和邏輯運(yùn)算單元,并輔助很多復(fù)雜的計(jì)算分支。而GPU 的運(yùn)算核心數(shù)量則可以多達(dá)上百個(gè)(流處理器),每個(gè)核擁有的緩存大小相對(duì)小,數(shù)字邏輯運(yùn)算單元也少而簡(jiǎn)單。

CPU和 GPU 最大的區(qū)別是設(shè)計(jì)結(jié)構(gòu)及不同結(jié)構(gòu)形成的不同功能。CPU的邏輯控制功能強(qiáng),可以進(jìn)行復(fù)雜的邏輯運(yùn)算,并且延時(shí)低,可以高效處理復(fù)雜的運(yùn)算任務(wù)。而 GPU邏輯控制和緩存較少,使得每單個(gè)運(yùn)算單元執(zhí)行的邏輯運(yùn)算復(fù)雜程度有限,但并列大量的計(jì)算單元,可以同時(shí)進(jìn)行大量較簡(jiǎn)單的運(yùn)算任務(wù)。

3.2 GPU 占據(jù)現(xiàn)階段自動(dòng)駕駛芯片主導(dǎo)地位

相比于消費(fèi)電子產(chǎn)品的芯片,車載的智能駕駛芯片對(duì)性能和壽命要求都比較高,主要體現(xiàn)在以下幾方面:

1、耗電每瓦提供的性能;

2、生態(tài)系統(tǒng)的構(gòu)建,如用戶群、易用性等;

3、滿足車規(guī)級(jí)壽命要求,至少 1 萬小時(shí)穩(wěn)定使用。

目前無論是尚未商業(yè)化生產(chǎn)的自動(dòng)駕駛 AI 芯片還是已經(jīng)可以量產(chǎn)使用的輔助駕駛芯片,由于自動(dòng)駕駛算法還在快速更新迭代,對(duì)云端“訓(xùn)練”部分提出很高要求,既需要大規(guī)模的并行計(jì)算,又需要大數(shù)據(jù)的多線程計(jì)算,因此以GPU+FPGA 解決方案為核心;在終端的“推理”部分,核心需求是大量并行計(jì)算,從而以 GPU為核心。

3.3 相關(guān)公司

3.3.1 NVIDIA

NVIDIA 在自動(dòng)駕駛領(lǐng)域的成就正是得益于他們?cè)贕PU 領(lǐng)域內(nèi)的深耕,NVIDIA GPU 專為并行計(jì)算而設(shè)計(jì),適合深度學(xué)習(xí)任務(wù),并且能夠處理在深度學(xué)習(xí)中普遍存在的向量和矩陣操作。相對(duì)于 Mobileye 專注于視覺處理,NVIDIA 的方案重點(diǎn)在于融合不同傳感器。

2016 年,英偉達(dá)在 Drive PX 2 平臺(tái)上推出了三款產(chǎn)品,分別是配備單 GPU 和單攝像頭及雷達(dá)輸入端口的 Drive PX2 Autocruise(自動(dòng)巡航)芯片(下圖左上)、配備雙 GPU 及多個(gè)攝像頭及雷達(dá)輸入端口的 Drive PX2 AutoChauffeur(自動(dòng)私人司機(jī))芯片(右上)、配備多個(gè) GPU 及多個(gè)攝像頭及雷達(dá)輸入端口的 Drive PX2 Fully Autonomous Driving(全自動(dòng)駕駛)

芯片(下方)。

以目前的銷售情況,Drive PX 2 搭載上一代Pascal 架構(gòu)GPU 已經(jīng)實(shí)現(xiàn)量產(chǎn),并且已經(jīng)搭載在Tesla 的量產(chǎn)車型Model S 以及Model X 上。目前PX 2 仍然是NVIDIA 自動(dòng)駕駛平臺(tái)出貨的主力,Tesla,Audi 和ZF 等對(duì)外公布Drive PX 2 應(yīng)用在量產(chǎn)車上。

Xavier 是Drive PX 2 的進(jìn)化版本,搭配了最新一代的Volta 架構(gòu)GPU, 相較于 Drive PX 2 性能將提升近一倍,2017 年年底量產(chǎn)。由于多家主機(jī)廠 L3 級(jí)別以上自動(dòng)駕駛量產(chǎn)車的計(jì)劃在2020 年左右,而 Xavier 的量產(chǎn)計(jì)劃將能和自動(dòng)駕駛車的研發(fā)周期相互配合(一般3 年左右),因此 Xavier 的合作都是有量產(chǎn)車落地計(jì)劃的。

而對(duì)于較早與 NVIDIA 達(dá)成合作的車廠來說,他們?cè)谛∨繙y(cè)試、量產(chǎn)的優(yōu)先級(jí)別以及可定制化空間等方面都能獲得一定的優(yōu)勢(shì)。

圖表13:NVIDIA DRIVE Pegasus AI計(jì)算平臺(tái)

目前,L4 及以上的市場(chǎng)基本上被 NVIDIA 壟斷,CEO 黃仁勛稱全球有 300 余家自動(dòng)駕駛研發(fā)機(jī)構(gòu)使用 Drive PX2。Drive PX 2 單價(jià)為 1.6 萬美金,功耗達(dá) 425 瓦,但目前沒有達(dá)到車規(guī),按功耗和成本看,只能小規(guī)模測(cè)試階段使用。

3.3.2 四維圖新

國(guó)內(nèi)地圖行業(yè)龍頭,向 ADAS 和自動(dòng)駕駛進(jìn)軍。公司成立于 2002 年,是國(guó)內(nèi)首家獲導(dǎo)航地圖制作資質(zhì)的企業(yè)(目前僅 13 家),為領(lǐng)先的數(shù)字地圖內(nèi)容、車聯(lián)網(wǎng)與動(dòng)態(tài)交通信息服務(wù)、基于位置的大數(shù)據(jù)垂直應(yīng)用服務(wù)的提供商之一。其拳頭業(yè)務(wù)——地圖業(yè)務(wù),以國(guó)內(nèi) 60%的份額穩(wěn)居壟斷地位。 2017 年以來,公司收購杰發(fā)科技、入股中寰衛(wèi)星與禾多科技,“高精度地圖+芯片+算法+軟件”的自動(dòng)駕駛產(chǎn)業(yè)鏈全方位布局雛形已現(xiàn)。

高精度地圖:代表國(guó)內(nèi)最高水平。公司以地圖起家,目前國(guó)內(nèi)高精度地圖僅兩家玩家(另一家為高德),公司深度綁定獲得寶馬、大眾、奔馳、通用、沃爾沃、福特、上汽、豐田、日產(chǎn)、現(xiàn)代、標(biāo)致等主流車企發(fā)展,占絕對(duì)優(yōu)勢(shì)。2017 年公司實(shí)現(xiàn)支持 L3 級(jí)別(至少 20 個(gè)城市)的高精度地圖,計(jì)劃于 2019 年覆蓋所有城市,并為 L4 的推出做準(zhǔn)備。公司地圖編譯能力亮眼,全球首位提供 NDS 地圖從生產(chǎn)到編譯環(huán)節(jié)。此外,公司在荷蘭、美國(guó)硅谷、新加坡等地設(shè)立研發(fā)中心和分支機(jī)構(gòu),合作伙伴涵蓋國(guó)際主流車廠、新一代整車企業(yè)以及騰訊、滴滴、搜狗、華為等國(guó)內(nèi)知名企業(yè)。

芯片:收購杰發(fā)科技布局汽車芯片。杰發(fā)科技(2017 年 3 月完成收購)脫胎于聯(lián)發(fā)科,主攻車載信息娛樂系統(tǒng)芯片。現(xiàn)階段在國(guó)內(nèi)后裝市場(chǎng)市占率超 70%,前裝超 30%(主要為吉利、豐田等車企),其車規(guī)級(jí)IVI 芯片被多家國(guó)際主流零部件廠商采用,并計(jì)劃推出 AMP、MCU 及 TPMS(胎壓監(jiān)測(cè))芯片等新一代產(chǎn)品。公司通過收購杰發(fā)科技,具備了為車廠提供高性能汽車電子芯片的能力,打通從軟件到硬件的關(guān)鍵性關(guān)卡,并與蔚來、威馬、愛馳億維等造車新勢(shì)力公司達(dá)成了合作。

該芯片采用 64 位 A53四核架構(gòu),內(nèi)置硬件圖像加速引擎,支持雙路高清視頻輸出,和四路高清視頻輸入,能同時(shí)支持高級(jí)車載影音娛樂系統(tǒng)全部功能和豐富的 ADAS 功能。功能包括:360°全景泊車系統(tǒng)、車道偏移警示系統(tǒng) LDW、前方碰撞警示系統(tǒng) FCW、行人碰撞警示系統(tǒng) PCW、交通標(biāo)志識(shí)別系統(tǒng) TSR、車輛盲區(qū)偵測(cè)系統(tǒng) BSD、駕駛員疲勞探測(cè)系統(tǒng) DFM 和后方碰撞預(yù)警系統(tǒng) RCW 等。

3.3.3 全志科技

在今年 5 月的 CES Asia,全志科技發(fā)布首款車規(guī)級(jí)處理器 T7,同時(shí)發(fā)布基于 T7 的多種智能座艙產(chǎn)品形態(tài)。T7 是數(shù)字座艙車規(guī)(AEC-Q100)平臺(tái)型處理器,支持 AndroidLinux、QNX系統(tǒng),集成多路高清影像輸入和輸出,完美支持高清多媒體處理,內(nèi)置的 EVE 視覺處理單元可提升輔助駕駛運(yùn)算效率。

該款芯片雖然是首款通過車規(guī)的國(guó)產(chǎn)中控主機(jī)芯片,但還處于起步階段,根據(jù)正常汽車電子芯片的生命周期,要規(guī)模應(yīng)用至少需要兩年時(shí)間,而等到形成較多的用戶和良好的生態(tài)還需很多資源投入以及時(shí)間的積累。因此國(guó)產(chǎn)車載芯片不論在自動(dòng)駕駛領(lǐng)域還是中控或輔助駕駛領(lǐng)域,想要真正形成量產(chǎn)與國(guó)外老牌巨頭競(jìng)爭(zhēng),都還需要大量人力、資本和時(shí)間。

四、車載芯片的未來—以 ASIC 為核心的自動(dòng)駕駛芯片

4.1 ASIC vs GPU+FPGA

GPU適用于單一指令的并行計(jì)算,而 FPGA 與之相反,適用于多指令,單數(shù)據(jù)流,常用于云端的“訓(xùn)練”階段。此外與 GPU對(duì)比,F(xiàn)PGA沒有存取功能,因此速度更快,功耗低,但同時(shí)運(yùn)算量不大。結(jié)合兩者優(yōu)勢(shì),形成GPU+FPGA 的解決方案。

FPGA 和 ASIC 的區(qū)別主要在是否可以編程。FPGA 客戶可根據(jù)需求編程,改變用途,但量產(chǎn)成本較高,適用于應(yīng)用場(chǎng)景較多的企業(yè)、軍事等用戶;而 ASIC 已經(jīng)制作完成并且只搭載一種算法和形成一種用途,首次“開模”成本高,但量產(chǎn)成本低,適用于場(chǎng)景單一的消費(fèi)電子、“挖礦”等客戶。目前自動(dòng)駕駛算法仍在快速更迭和進(jìn)化,因此大多自動(dòng)駕駛芯片使用GPU+FPGA 的解決方案。未來算法穩(wěn)定后,ASIC 將成為主流。

計(jì)算能耗比,ASIC > FPGA > GPU > CPU,究其原因,ASIC 和 FPGA 更接近底層 IO,同時(shí)FPGA有冗余晶體管和連線用于編程,而 ASIC 是固定算法最優(yōu)化設(shè)計(jì),因此 ASIC 能耗比最高。相比前兩者,GPU 和 CPU 屏蔽底層 IO,降低了數(shù)據(jù)的遷移和運(yùn)算效率,能耗比較高。同時(shí) GPU 的邏輯和緩存功能簡(jiǎn)單,以并行計(jì)算為主,因此 GPU能耗比又高于 CPU。

4.2 ASIC 是未來自動(dòng)駕駛芯片的核心和趨勢(shì)

結(jié)合 ASIC 的優(yōu)勢(shì),我們認(rèn)為長(zhǎng)遠(yuǎn)看自動(dòng)駕駛的 AI 芯片會(huì)以 ASIC 為解決方案,主要有以下幾個(gè)原因:

1、由于處理的傳感器信息需要大量冗余,自動(dòng)駕駛對(duì)終端算力要求極高,并且車速越快,對(duì)計(jì)算能力要求越高;

2、自動(dòng)駕駛對(duì)終端計(jì)算的實(shí)時(shí)性要求極高。任何超出一定范圍的延遲,都有可能造成事故,因此終端會(huì)負(fù)責(zé)自動(dòng)駕駛的核心計(jì)算和決策功能;

3、對(duì)能效要求高,否則降低車輛續(xù)航,影響駕駛體驗(yàn)。高能耗同時(shí)帶來的熱量也會(huì)降低系統(tǒng)穩(wěn)定性。例如下一代支持 L4 的 NVIDIA Drive Pegasus 功耗為 500 瓦,只能應(yīng)用于小規(guī)模的測(cè)試車;

4、高可靠性。真正滿足車規(guī)的自動(dòng)駕駛芯片需要在嚴(yán)寒酷暑、刮風(fēng)下雨或長(zhǎng)時(shí)間運(yùn)行等惡劣條件下,都有穩(wěn)定的計(jì)算表現(xiàn)。

綜上 ASIC 專用芯片幾乎是自動(dòng)駕駛量產(chǎn)芯片唯一的解決方案。由于這種芯片僅支持單一算法,對(duì)芯片設(shè)計(jì)者在算法、IC 設(shè)計(jì)上都提出很高要求。

以上并非下定論目前 ASIC 為核心的芯片一定比 GPU+FPGA 的芯片強(qiáng),由于目前自動(dòng)駕駛算法還在快速迭代和升級(jí)過程中,過早以固有算法生產(chǎn)ASIC 芯片長(zhǎng)期來看不一定是最優(yōu)選擇。

4.3 相關(guān)公司

4.3.1 Mobileye

Intel 在ADAS 處理器上的布局已經(jīng)完善,包括Mobileye 的ADAS 視覺處理,利用Altera 的FPGA 處理,以及英特爾自身的至強(qiáng)等型號(hào)的處理器,可以形成自動(dòng)駕駛整個(gè)硬件超級(jí)中央控制的解決方案。

Mobileye 具有自主研發(fā)設(shè)計(jì)的芯片 EyeQ 系列,由意法半導(dǎo)體公司生產(chǎn)供應(yīng)。現(xiàn)在已經(jīng)量產(chǎn)的芯片型號(hào)有 EyeQ1 至 EyeQ4,EyeQ5 正在開發(fā)進(jìn)行中,計(jì)劃 2020 年面世,對(duì)標(biāo)英偉達(dá) Drive PX Xavier,并透露 EyeQ5 的計(jì)算性能達(dá)到了 24 TOPS,功耗為 10 瓦,芯片節(jié)能效率是 Drive Xavier 的2.4 倍。

英特爾自動(dòng)駕駛系統(tǒng)將采用攝像頭為先的方法設(shè)計(jì),搭載兩塊EyeQ5 系統(tǒng)芯片、一個(gè)英特爾凌動(dòng) C3xx4 處理器以及 Mobileye 軟件,大規(guī)模應(yīng)用于可擴(kuò)展的 L4/L5 自動(dòng)駕駛汽車。該系列已被奧迪、寶馬、菲亞特、福特、通用等多家汽車制造商使用。

從硬件架構(gòu)來看,該芯片包括了一組工業(yè)級(jí)四核MIPS 處理器,以支持多線程技術(shù)能更好的進(jìn)行數(shù)據(jù)的控制和管理(下圖左上)。多個(gè)專用的向量微碼處理器(VMP),用來應(yīng)對(duì)ADAS 相關(guān)的圖像處理任務(wù)(如:縮放和預(yù)處理、翹曲、跟蹤、車道標(biāo)記檢測(cè)、道路幾何檢測(cè)、濾波和直方圖等,下圖右上)。一顆軍工級(jí)MIPS Warrior CPU 位于次級(jí)傳輸管理中心,用于處理片內(nèi)片外的通用數(shù)據(jù)(下圖左中)。

此外通過行業(yè)訪談?wù){(diào)研等途徑了解到,Mobileye 在 L1-L3 智能駕駛領(lǐng)域具有極大的話語權(quán),對(duì) Tire1 和 OEM 非常強(qiáng)勢(shì),其算法和芯片綁定,不允許更改。

4.3.2 寒武紀(jì)

5 月3 日,寒武紀(jì)科技在 2018 產(chǎn)品發(fā)布會(huì)上發(fā)布了多個(gè) IP 產(chǎn)品——采用

7nm 工藝的終端芯片Cambricon 1M、云端智能芯片MLU100 等。

其中寒武紀(jì) 1M芯片是公司第三代 IP產(chǎn)品,在 TSMC7nm工藝下 8 位運(yùn)算的效能比達(dá) 5Tops/w(每瓦 5 萬億次運(yùn)算),同時(shí)提供 2Tops、4Tops、 8Tops 三種尺寸的處理器內(nèi)核,以滿足不同需求。1M 還將支持 CNN、 RNN、SVM、k-NN 等多種深度學(xué)習(xí)模型與機(jī)器學(xué)習(xí)算法的加速,能夠完成視覺、語音、自然語言處理等任務(wù)。通過靈活配置 1M 處理器,可以實(shí)現(xiàn)多線和復(fù)雜自動(dòng)駕駛?cè)蝿?wù)的資源最大化利用。它還支持終端的訓(xùn)練,以此避免敏感數(shù)據(jù)的傳輸和實(shí)現(xiàn)更快的響應(yīng)。

寒武紀(jì)首款云端智能芯片 Cambricon MLU100 同期發(fā)布,同時(shí)公布了在 R-CNN算法下 MLU100 與英偉達(dá) Tesla V100(2017)和英偉達(dá) Tesla P4

(2016)的對(duì)比,從參數(shù)上看,主要對(duì)標(biāo) Tesla P4。

最后說明芯片從設(shè)計(jì)到落地應(yīng)用面臨的潛在風(fēng)險(xiǎn):

4.3.3 地平線

2017 年地平線發(fā)布了新一代自動(dòng)駕駛芯片“征程”和配套軟件平臺(tái)方案 “雨果”,同時(shí)還發(fā)布了應(yīng)用于智能攝像頭的“旭日”處理器。“征程”是一款專用 AI 芯片,采用地平線的第一代 BPU 架構(gòu),可實(shí)時(shí)處理 1080p@30 視頻,每幀中可同時(shí)對(duì) 200 個(gè)目標(biāo)進(jìn)行檢測(cè)、跟蹤、識(shí)別,典型功耗 1.5W,每幀延時(shí)小于 30ms。據(jù)地平線CEO 余凱介紹,地平線的芯片更聚焦在針對(duì)不同場(chǎng)景下的具體應(yīng)用,相比于英偉達(dá)的方案,在功耗上低一個(gè)數(shù)量級(jí),價(jià)格也會(huì)有更大的競(jìng)爭(zhēng)力。

2018 年亞洲 CES,地平線宣布推出從 L2 到 L4 級(jí)別全系列的自動(dòng)駕駛計(jì)算平臺(tái)。

地平線星云,基于征程 1.0 芯片,能夠以車規(guī)級(jí)標(biāo)準(zhǔn)滿足 L1 和 L2 級(jí)別的自動(dòng)駕駛的需求,能同時(shí)對(duì)行人、機(jī)動(dòng)車、非機(jī)動(dòng)車、車道線、交通標(biāo)志牌、紅綠燈等多類目標(biāo)進(jìn)行精準(zhǔn)的實(shí)時(shí)監(jiān)測(cè)與識(shí)別;并可滿足車載設(shè)備嚴(yán)苛的環(huán)境要求,以及復(fù)雜環(huán)境下的視覺感知需求,支持L2 級(jí)別 ADAS 功能。

地平線 Matrix 1.0,內(nèi)置地平線征程 2.0 處理器架構(gòu),最大化嵌入式 AI 計(jì)算性能,是面向 L3/L4 的自動(dòng)駕駛解決方案,可滿足自動(dòng)駕駛場(chǎng)景下高性能和低功耗的需求。依托地平線公司自主研發(fā)的工具鏈,開發(fā)者和研究人員可以基于 Matrix 平臺(tái)部署神經(jīng)網(wǎng)絡(luò)模型,實(shí)現(xiàn)開發(fā)、驗(yàn)證、優(yōu)化和部署。

4.3.4 百度“昆侖”

7 月 4 日百度 AI 開發(fā)者大會(huì)上,李彥宏發(fā)布了由百度自主研發(fā)的中國(guó)首款云端全功能 AI 芯片——“昆侖”。“昆侖”基于百度 8 年的 AI 加速器經(jīng)驗(yàn)的研發(fā),預(yù)計(jì)將于明年流片。

“昆侖”采用 14nm 三星工藝,是業(yè)內(nèi)設(shè)計(jì)算力最高的 AI 芯片(100+瓦功耗下提供 260Tops 性能);512GB/s 內(nèi)存帶寬,由幾萬個(gè)小核心構(gòu)成。

“昆侖”可高效地同時(shí)滿足訓(xùn)練和推斷的需求,除了常用深度學(xué)習(xí)算法等云端需求,還能適配諸如自然語言處理,大規(guī)模語音識(shí)別,自動(dòng)駕駛,大規(guī)模推薦等具體終端場(chǎng)景的計(jì)算需求。此外可以支持 paddle 等多個(gè)深度學(xué)習(xí)框架,編程靈活度高。

同時(shí)也有媒體對(duì)該產(chǎn)品提出疑義,主要有以下兩點(diǎn):

1、算力一般采用的是基于浮點(diǎn)計(jì)算的 TFLOPS,性能從倍精度、單精度到半精度,例如寒武紀(jì)公布算力跨度從16 TFLOPS 到166 TFLOPS。昆侖僅提供單一精度數(shù)據(jù),且只公開最大整數(shù)計(jì)算能力(TOPS),與其他芯片的可比性較低;

2、昆侖芯片的TOPS 參數(shù)比 NVIDIA 的V100 高,但并未公布芯片的規(guī)模,只說明了整合了數(shù)萬個(gè)小核心,數(shù)據(jù)可比性也不高。

4.3.5 Google TPU

Google TPU于 2016 年在 Google I / O 上宣布,當(dāng)時(shí)該公司表示 TPU已在其數(shù)據(jù)中心內(nèi)使用了一年以上。該芯片專為 Google 的 Tensor Flow(一個(gè)符號(hào)數(shù)學(xué)庫,用于神經(jīng)網(wǎng)絡(luò)等機(jī)器學(xué)習(xí)應(yīng)用)框架而設(shè)計(jì)。

Google TPU 是專用的,并不面向市場(chǎng),谷歌僅表示“將允許其他公司通過其云計(jì)算服務(wù)購買這些芯片。”今年 2 月,谷歌在其云平臺(tái)博客上宣布的TPU 服務(wù)開放價(jià)格大約為每 cloud TPU (180TFLOPS 和 64 GB 內(nèi)存)每小時(shí)6.50 美元。Google 使用 TPU開發(fā)圍棋系統(tǒng) AlphaGo 和 Alpha Zero 以及進(jìn)行 Google 街景視頻文字處理等,能夠在不到五天的時(shí)間內(nèi)找到街景數(shù)據(jù)庫中的所有文字,此外 TPU也用于提供 Google 搜索結(jié)果的排序。

TPU與同期的 CPU和 GPU相比,可以提供 15-30 倍的性能提升,以及 30-80 倍的效率(性能/瓦特)提升。

4.3.6 Xilinx & 深鑒科技

Xilinx(賽靈思)是 FPGA 的先行者和領(lǐng)導(dǎo)者,1984 年,賽靈思發(fā)明了現(xiàn)場(chǎng)可編程門陣列 FPGA,作為半定制化的 ASIC,順應(yīng)了計(jì)算機(jī)需求更專業(yè)的趨勢(shì)。FPGA 的好處是可編程以及帶來的靈活配置,同時(shí)還可以提高整體系統(tǒng)性能,比單獨(dú)開發(fā)芯片整個(gè)開發(fā)周期大為縮短,但缺點(diǎn)是價(jià)格、尺寸等因素。

在汽車 ADAS 和自動(dòng)駕駛解決方案上,賽靈思的 FPGA 和 SOC 產(chǎn)品家族衍生出三個(gè)模塊:

自動(dòng)駕駛中央控制器 Zynq UltraScale+ MPSoC

前置攝像頭 Zynq-7000 / Zynq UltraScale+ MPSoC

多傳感器融合系統(tǒng) Zynq UltraScale+ MPSoC

▲賽靈思Zynq芯片

Zynq 采用單一芯片即可完成ADAS 解決方案的開發(fā),SOC 平臺(tái)大幅提升了性能,便于各種捆綁式應(yīng)用,能實(shí)現(xiàn)不同產(chǎn)品系列間的可擴(kuò)展性,可幫助系統(tǒng)廠商加快在環(huán)繞視覺、3D 環(huán)繞視覺、后視攝像頭、動(dòng)態(tài)校準(zhǔn)、行人檢測(cè)、后視車道偏離警告和盲區(qū)檢測(cè)等ADAS 應(yīng)用的開發(fā)時(shí)間。并且可以讓 OEM和 Tier1 在平臺(tái)上添加自己的IP 以及賽靈思自己的擴(kuò)展。

▲賽靈思多傳感器融合系統(tǒng)

深鑒科技成立于2016 年,其創(chuàng)始團(tuán)隊(duì)有著深厚的清華背景,專注于神經(jīng)網(wǎng)絡(luò)剪枝、深度壓縮技術(shù)及系統(tǒng)級(jí)優(yōu)化。2018 年 7 月 17 日,賽靈思宣布收購深鑒科技。自成立以來,深鑒科技就一直基于賽靈思的技術(shù)平臺(tái)開發(fā)機(jī)器學(xué)習(xí)解決方案,推出的兩個(gè)用于深度學(xué)習(xí)處理器的底層架構(gòu)—亞里士多德架構(gòu)和笛卡爾架構(gòu)的DPU 產(chǎn)品,都是基于賽靈思FPGA 器件。

▲亞里士多德架構(gòu)

▲笛卡爾架構(gòu)

對(duì)于賽靈思來說,看好深鑒科技基于機(jī)器學(xué)習(xí)的軟件、算法,以及面向云側(cè)和端側(cè)硬件架構(gòu)的優(yōu)勢(shì);對(duì)于深鑒科技,后期發(fā)展高昂的研發(fā)費(fèi)用、高成本的芯片設(shè)計(jì)、流片、試制、認(rèn)證、投片量產(chǎn),投靠賽靈思能夠降低隨之而來的風(fēng)險(xiǎn),進(jìn)入芯片戰(zhàn)爭(zhēng)的持久戰(zhàn)。

2018 年 6 月,深鑒科技宣布進(jìn)軍自動(dòng)駕駛領(lǐng)域,自主研發(fā)的 ADAS輔助駕駛系統(tǒng)——DPhiAuto,目前已獲得日本與歐洲一線車企廠商和 Tier 1 的訂單,即將實(shí)現(xiàn)量產(chǎn)。

DPhiAuto,基于 FPGA,是面向高級(jí)輔助駕駛和自動(dòng)駕駛的嵌入式 AI計(jì)算平臺(tái),可提供車輛檢測(cè)、行人檢測(cè)、車道線檢測(cè)、語義分割、交通標(biāo)志識(shí)別、可行駛區(qū)域檢測(cè)等深度學(xué)習(xí)算法功能,是一套針對(duì)計(jì)算機(jī)視覺環(huán)境感知的軟硬件協(xié)同產(chǎn)品。功耗方面,可以在 10-20W 的功耗范圍內(nèi),實(shí)現(xiàn)等效性能,能效比指標(biāo)高于目前主流的 CPU、GPU方案。

▲DPhiAuto性能

▲DPhiAuto樣品

五、風(fēng)險(xiǎn)提示

自動(dòng)駕駛及車聯(lián)網(wǎng)行業(yè)發(fā)展不及預(yù)期。可能出現(xiàn)自動(dòng)駕駛及車聯(lián)網(wǎng)行業(yè)技術(shù)發(fā)展較慢,或出現(xiàn)相關(guān)事故使發(fā)展停滯情況。

自動(dòng)駕駛裝車滲透不及預(yù)期。整車廠裝車計(jì)劃延遲。、

產(chǎn)品開發(fā)不及預(yù)期。控制器、芯片、傳感器、CID 等開發(fā)進(jìn)度延遲;技術(shù)角度來說,自動(dòng)駕駛越到開發(fā)測(cè)試的后期技術(shù)的提升越困難,提升的幅度越小。需要持續(xù)不斷的投入、測(cè)試,反復(fù)驗(yàn)證更新解決方案。

產(chǎn)品成本下降不達(dá)預(yù)期。目前大多數(shù)系統(tǒng)及零部件的出貨量還很小,涉足的公司前期投入非常大,如果出貨量不達(dá)預(yù)期,成本下降有限。

使用場(chǎng)景限制。復(fù)雜路況需要的系統(tǒng)魯棒性極高,對(duì)于自動(dòng)駕駛解決方案也是很大挑戰(zhàn)。

法律法規(guī)限制自動(dòng)駕駛發(fā)展。道路測(cè)試、運(yùn)行安全、駕駛規(guī)則、信息安全、責(zé)任劃分等等都需要法律法規(guī)的支持。要想推動(dòng)智能汽車行業(yè)發(fā)展,完善立法是核心要素之一。

自動(dòng)駕駛事故影響發(fā)展。自動(dòng)駕駛遭遇嚴(yán)重事故案例,類似事故會(huì)造成輿論和政策方面的不利影響,延緩自動(dòng)駕駛進(jìn)展。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • asic
    +關(guān)注

    關(guān)注

    34

    文章

    1202

    瀏覽量

    120536
  • gpu
    gpu
    +關(guān)注

    關(guān)注

    28

    文章

    4743

    瀏覽量

    129008
  • 車載芯片
    +關(guān)注

    關(guān)注

    0

    文章

    75

    瀏覽量

    14748

原文標(biāo)題:自動(dòng)駕駛芯片行業(yè)深度解析:GPU的現(xiàn)在和ASIC的未來!

文章出處:【微信號(hào):icsmart,微信公眾號(hào):芯智訊】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    TPMS技術(shù)與發(fā)展趨勢(shì)

    TPMS技術(shù)與發(fā)展趨勢(shì)TPMS發(fā)射器由五個(gè)部分組成(1)具有壓力、溫度、加速度、電壓檢測(cè)和后信號(hào)處理ASIC 芯片組合的智能傳感器SoC;(2)4-8位單片機(jī)(MCU);(3)RF射頻發(fā)射芯片
    發(fā)表于 10-06 15:12

    stm8的發(fā)展趨勢(shì)

    大家來討論一下stm8的發(fā)展趨勢(shì),聽說最近挺火哦!
    發(fā)表于 11-04 15:27

    開關(guān)電源的發(fā)展趨勢(shì)方向

    、體積輕、效率高等。開關(guān)電源以小型、輕量和高效率的特點(diǎn)被廣泛應(yīng)用幾乎所有的電子設(shè)備,是當(dāng)今電子信息產(chǎn)業(yè)飛速發(fā)展不可缺少的一種電源方式。開關(guān)電源發(fā)展方向  開關(guān)電源高頻化是其發(fā)展方向
    發(fā)表于 12-25 18:02

    PLC的未來發(fā)展趨勢(shì)的三個(gè)方向

    PLC的未來發(fā)展趨勢(shì)主要有以下的三個(gè)方向:1、功能向增強(qiáng)化和專業(yè)化地方向發(fā)展,針對(duì)不同行業(yè)的應(yīng)用特點(diǎn),開發(fā)出專業(yè)化的PLC產(chǎn)品,以此來提高產(chǎn)品的性能和降低產(chǎn)品的成本,提高產(chǎn)品的易用性和
    發(fā)表于 01-14 18:32

    開關(guān)電源發(fā)展趨勢(shì)發(fā)展前景

    趨勢(shì),利潤(rùn)點(diǎn)也比普通的恒壓,恒功率開關(guān)電源利潤(rùn)點(diǎn)高。2、未來相當(dāng)長(zhǎng)的時(shí)間內(nèi),電子業(yè)發(fā)展會(huì)保持迅猛勢(shì)頭,有電子產(chǎn)品就要有電源。3、電子設(shè)備大發(fā)展方向是輕型、簡(jiǎn)單,而電源要做到輕量化,非開關(guān)電源莫屬。4
    發(fā)表于 03-20 14:15

    光伏并網(wǎng)逆變器的發(fā)展趨勢(shì)

    `光伏并網(wǎng)逆變器的發(fā)展趨勢(shì)對(duì)于光伏并網(wǎng)逆變器來講,提高電源的轉(zhuǎn)換效率是一個(gè)永恒的課題,但是當(dāng)系統(tǒng)的效率越來越高,進(jìn)一步的效率改善會(huì)伴隨著性價(jià)比的低下,因此,如何保持一個(gè)很高的效率,又能維持很好
    發(fā)表于 09-29 16:40

    先進(jìn)封裝技術(shù)的發(fā)展趨勢(shì)

    連接方式的發(fā)展趨勢(shì)半導(dǎo)體封裝內(nèi)部芯片和外部管腳以及芯片之間的連接起著確立芯片和外部的電氣連接、確保芯片和外界之問的輸入/輸出暢通的重要作用,
    發(fā)表于 11-23 17:03

    未來觸控產(chǎn)品發(fā)展趨勢(shì)1

    `未來觸控產(chǎn)品發(fā)展趨勢(shì)之一:高度集成性帶來低成本顯示驅(qū)動(dòng)器IC與觸控功能加以集成、整合的解決方案將是未來的發(fā)展方向。由于智能手機(jī)向中低端市場(chǎng)延伸,從市場(chǎng)形態(tài)看,觸控產(chǎn)業(yè)也展現(xiàn)出低成本化的特征
    發(fā)表于 01-07 16:49

    單片機(jī)的發(fā)展趨勢(shì)

    [td]目前,單片機(jī)正朝著高性能和多品種方向發(fā)展趨勢(shì)將是進(jìn)一步向著CMOS化、低功耗、體積小、容量大、性能高、價(jià)格低和外圍電路內(nèi)裝化等幾個(gè)方向發(fā)展,如今世界上各大
    發(fā)表于 01-29 07:02

    電源模塊的未來發(fā)展趨勢(shì)如何

    電源模塊的未來發(fā)展趨勢(shì)如何
    發(fā)表于 03-11 06:32

    電池供電的未來發(fā)展趨勢(shì)如何

    電池供電的未來發(fā)展趨勢(shì)如何
    發(fā)表于 03-11 07:07

    汽車電子技術(shù)的發(fā)展趨勢(shì)是什么?

    汽車電子技術(shù)的發(fā)展趨勢(shì)是什么?
    發(fā)表于 05-17 06:33

    CMOS射頻電路的發(fā)展趨勢(shì)如何?

    CMOS射頻電路的發(fā)展趨勢(shì)如何?
    發(fā)表于 05-31 06:05

    ai芯片gpu的區(qū)別

    ai芯片gpu的區(qū)別▌車載芯片發(fā)展趨勢(shì)(CPU-GPU-FPGA-ASIC)過去汽車電子
    發(fā)表于 07-27 07:29

    車載芯片發(fā)展趨勢(shì)(CPU-GPU-FPGA-ASIC)

    ASIC芯片可在相對(duì)低水平的能耗下,將車載信息的數(shù)據(jù)處理速度提升更快,隨著自動(dòng)駕駛的定制化需求提升,ASIC專用芯片將成為主流。本文以如上
    的頭像 發(fā)表于 08-09 11:11 ?2.3w次閱讀
    主站蜘蛛池模板: 欧美日韩中文国产一区发布| 亚洲成人欧美| 蜜臀AV精品一区二区三区| 麻豆久久婷婷五月国产| 啦啦啦影院视频在线看高清...| 久久夜色撩人精品国产| 农民工老头在出租屋嫖老熟女| 青草久久伊人| 五花大绑esebdsm国产| 亚洲欧美偷拍视频一区| 2021国产精品视频一区| YELLOW视频在线观看大全| 国产第一页在线视频| 黄色网址在线播放| 免费A级毛片无码无遮挡内射| 欧美性狂猛bbbbbbxxxx| 色窝窝亚洲AV在线观看| 亚洲精品不卡视频| 6 10young俄罗斯| 成人 迅雷下载| 国内精品久久人妻无码HD浪潮| 恋孩癖网站大全在线观看| 欧美一级做a爰片免费| 我们中文在线观看免费完整版| 夜夜穞狠狠穞| 波野结衣qvod| 国产一区二区精品视频| 免费高清国产| 午夜理论片YY4399影院| 伊人久久大香线蕉无码麻豆| porono日本xxx| 国偷自产视频一区二区99 | 亚洲午夜福利未满十八勿进| 97视频在线观看免费视频| 丰满的女朋友韩国版在线观看| 狠狠色狠狠色综合日日92| 欧美丰满白嫩bbxx| 亚洲 综合 欧美在线视频| 4480YY旧里番在线播放| 国产高清-国产av| 美女脱三角裤|