上周,來自百度資深軟件工程師—Yifei Jiang,在Apollo開發(fā)者社群內(nèi)分享了有關(guān)Apollo相對(duì)地圖的內(nèi)容,通過基于人工駕駛路徑的實(shí)時(shí)地圖生成方案,和相對(duì)地圖模塊特點(diǎn)及應(yīng)用等技術(shù)內(nèi)容,進(jìn)一步剖析了Apollo相對(duì)地圖,讓開發(fā)者了解相對(duì)地圖在自動(dòng)駕駛中的使用及實(shí)際應(yīng)用。
錯(cuò)過社群直播的開發(fā)者可以從以下資料回顧干貨內(nèi)容:
Apollo相對(duì)地圖
基于人工駕駛路徑的實(shí)時(shí)地圖生成
百度資深軟件工程師Yifei Jiang
相對(duì)地圖是在Apollo 2.5的時(shí)候第一次對(duì)外開放。在3.0的時(shí)候我們和長沙智能駕駛研究院一起合作研發(fā),對(duì)相對(duì)地圖進(jìn)行了功能和架構(gòu)上的升級(jí)。今天我會(huì)給大家介紹什么是相對(duì)地圖,為什么我們要做相對(duì)地圖,以及相對(duì)地圖是如何設(shè)計(jì)和實(shí)現(xiàn)的。
本次分享將會(huì)從以下四個(gè)方面展開:
一、相對(duì)地圖的功能及特點(diǎn)
二、指引者的設(shè)計(jì)思想及在相對(duì)地圖中的作用
三、相對(duì)地圖在自動(dòng)駕駛中的使用
四、相對(duì)地圖和指引者的設(shè)計(jì)細(xì)節(jié)及特點(diǎn)總結(jié)
在公眾號(hào)內(nèi)回復(fù)“ PPT0731 ”獲取完整PPT
1相對(duì)地圖的功能及特點(diǎn)
這是Apollo一個(gè)簡(jiǎn)單框架圖,在這張圖的底部是規(guī)劃和控制模塊,負(fù)責(zé)車輛行駛軌跡的規(guī)劃和執(zhí)行。這個(gè)模塊依賴兩個(gè)重要的上游模塊高清地圖和感知。
感知模塊主要提供了動(dòng)態(tài)障礙物的信息,比如車輛,行人及其他障礙物。由于感知模塊加入了視覺感知的能力,該模塊也能夠提供部分實(shí)時(shí)地圖信息,比如車輛的當(dāng)前車道線,斑馬線,和紅綠燈停止線。這類信息通過實(shí)時(shí)計(jì)算得到,成本低,但是依賴于路面狀況及標(biāo)識(shí)清晰度。
和實(shí)時(shí)地圖相對(duì)應(yīng)的是高清地圖模塊提供的靜態(tài)地圖信息。相比實(shí)時(shí)地圖信息,靜態(tài)地圖信息是在線下提前收集和處理,這個(gè)信息由于是在線下制作,準(zhǔn)確度高,信息種類更加豐富細(xì)致,而且不依賴于路面狀況,但是制作周期長,成本高。
為了將有不同特點(diǎn)和格式的實(shí)時(shí)地圖信息和靜態(tài)地圖信息更好的結(jié)合在一起,同時(shí)也為了給規(guī)劃和控制模塊提供統(tǒng)一的接口。我們?cè)O(shè)計(jì)和開發(fā)了相對(duì)地圖模塊。
相對(duì)地圖有如下兩個(gè)特點(diǎn):
首先,產(chǎn)生的地圖數(shù)據(jù)是相對(duì)于車的車身坐標(biāo)系,這也是為什么該模塊被命名為相對(duì)地圖;在車身坐標(biāo)系下,車輛坐標(biāo)永遠(yuǎn)在原點(diǎn),車頭方向永遠(yuǎn)為0。
其次,地圖數(shù)據(jù)會(huì)根據(jù)車的位置和朝向的變化實(shí)時(shí)更新,更新頻率是10Hz。
相對(duì)地圖采用車身坐標(biāo)系,而不是全局坐標(biāo)系,有兩個(gè)原因:
第一,感知模塊的原始數(shù)據(jù)輸出是基于車身坐標(biāo)系。采用車身坐標(biāo)系,我們就不需要把感知的輸出再轉(zhuǎn)化成全局坐標(biāo)系。這樣減少了轉(zhuǎn)化帶來的誤差,也減少了轉(zhuǎn)化的計(jì)算量。
第二,在相對(duì)地圖的一些模式下,只能使用車身坐標(biāo)系,比如在定位不存在或者不準(zhǔn)確的時(shí)候。為了使相對(duì)地圖能夠在所有模式下進(jìn)行無縫實(shí)時(shí)切換,我們統(tǒng)一了坐標(biāo)系到車身坐標(biāo)系。同時(shí)規(guī)劃和控制模塊也能夠無感的處理不同的輸入和場(chǎng)景。
不管是基于實(shí)時(shí)地圖信息還是靜態(tài)地圖信息,相對(duì)地圖對(duì)規(guī)劃和控制模塊提供了接口統(tǒng)一的地圖數(shù)據(jù)。這些地圖數(shù)據(jù)約束和限制著規(guī)劃和控制模塊產(chǎn)生的軌跡和速度。比如,數(shù)據(jù)中的車道線限制規(guī)劃路徑要在左右車道線之間。再比如地圖中的紅綠燈停止線限制車輛在紅燈時(shí)不能超過停止線。
這種約束性的地圖信息,使得規(guī)劃和控制模塊能夠進(jìn)行嚴(yán)謹(jǐn)而且精確的數(shù)學(xué)建型,然后進(jìn)行數(shù)學(xué)優(yōu)化,得到最優(yōu)的規(guī)劃結(jié)果。但同時(shí)也帶來了一系列的問題。
第一,約束信息必須準(zhǔn)確而且完整。因?yàn)槿笔魏我粋€(gè)約束條件都會(huì)導(dǎo)致錯(cuò)誤的規(guī)劃。這樣的要求會(huì)增加地圖的成本。
第二,每一個(gè)約束條件需要標(biāo)注各種交規(guī)相關(guān)的屬性,比如,一個(gè)車道線,可能是白虛線,也可能是黃實(shí)線。不同的交規(guī)屬性會(huì)影響規(guī)劃和控制的輸出。另外每一種約束也可能會(huì)有它的物理屬性,比如一個(gè)路的邊界可能是一個(gè)馬路牙子,也可能是一道鐵柵欄,甚至是一個(gè)懸崖。這種物理屬性,也會(huì)影響規(guī)劃和控制的輸出。這些標(biāo)注會(huì)增加地圖制作標(biāo)注的復(fù)雜性。
第三,現(xiàn)實(shí)世界中,不是每一個(gè)約束都明顯的存在。比如在路口里面或者老舊的路面,車道線并沒有標(biāo)示出來。因?yàn)榧s束的完整性要求,我們必須要填補(bǔ)這些缺失,而且在填補(bǔ)時(shí),需要考慮規(guī)劃和控制的特性。這樣就增加了地圖制作的難度,也不能和規(guī)劃控制進(jìn)行很好的解偶。
2指引者的設(shè)計(jì)思想及在相對(duì)地圖中的作用
因?yàn)榧s束性地圖信息帶來的上述問題,我們?cè)谠O(shè)計(jì)相對(duì)地圖的時(shí)候一直在考慮,除了對(duì)規(guī)劃控制提供限制和約束,告訴規(guī)劃控制不可以做什么,我們能不能告訴規(guī)劃和控制模塊可以做什么,對(duì)規(guī)劃和控制模塊提出引導(dǎo)——這就是我們提出的引導(dǎo)性的地圖信息。
如上圖所示的一個(gè)形象的比喻,約束性地圖信息是就像在地面上擺交通錐,引導(dǎo)性的地圖信息就像為規(guī)劃和控制模塊建一個(gè)虛擬的鐵軌。
引導(dǎo)性信息有如下優(yōu)點(diǎn):
第一,簡(jiǎn)化信息量,降低信息成本。因?yàn)槟茏龅氖裁纯赡苄跃椭挥幸粋€(gè)或者幾個(gè),遠(yuǎn)遠(yuǎn)小于不能做什么的信息量。
第二,對(duì)約束的依賴很低,不需要收集和標(biāo)注約束信息。因?yàn)橐龑?dǎo)的信息,已經(jīng)考慮到了各種限制的影響。
第三,限制性的地圖信息,只對(duì)安全進(jìn)行了限制,舒適性是由規(guī)劃和控制在安全的基礎(chǔ)上進(jìn)行優(yōu)化。但是引導(dǎo)信息不僅有安全性上的引導(dǎo),而且有舒適性的引導(dǎo)。
具體到Apollo,引導(dǎo)性地圖信息就是我們引入了的指引線概念。指引線是基于線下收集的人工駕駛路徑生成的虛擬“軌道”, 如上圖的綠色線段所示。
指引線有如下優(yōu)點(diǎn):
首先,因?yàn)槁窂绞怯扇斯ゑ{駛產(chǎn)生的,兼顧了安全和舒適性。
其次,指引線的成本低。從人工駕駛路徑到指引線的生成,是一個(gè)全自動(dòng)的過程,不需要任何的人工標(biāo)注。
另外,整個(gè)指引線生成過程,是線下完成的。我們?cè)谕宦范危梢越Y(jié)合不同的人,不同場(chǎng)景下收集多段路徑,使得最終的指引線更加優(yōu)化,減少偏差。
最后,我們可以為不同的車型,產(chǎn)生不同的指引線。比如說,大卡車和小轎車,尤其在拐彎的時(shí)候,路徑有很大的區(qū)別。這種區(qū)別就可以體現(xiàn)在不同的指引線上,同時(shí)降低我們對(duì)車輛模型的依賴。
為了在Apollo系統(tǒng)中引入指引線,我們加入了一個(gè)新的模塊,叫指引者。指引者連接者高清地圖和相對(duì)地圖,為相對(duì)地圖提供引導(dǎo)信息。 它即可以單獨(dú)使用也可以和高清地圖配合使用。這樣相對(duì)地圖為規(guī)劃和控制不僅可以提供約束,也提供了引導(dǎo)。
根據(jù)約束和引導(dǎo)的重要性的不同,相對(duì)地圖提供了兩大模式:模式1和模式2。
模式1是以約束為主:在這種模式下,相對(duì)地圖接入了指引線和高清地圖數(shù)據(jù),為規(guī)劃和控制提供了引導(dǎo)和完整的約束。 這樣的模式適用于復(fù)雜駕駛場(chǎng)景,比如城市道路。
模式2是以引導(dǎo)為主:這種模式下,相對(duì)地圖不依賴高清地圖,只接入實(shí)時(shí)地圖信息和指引線,為規(guī)劃和控制提供了引導(dǎo)和基本約束。這種模式適用簡(jiǎn)單駕駛場(chǎng)景。比如高速或者鄉(xiāng)村道路。由于不依賴高清地圖,這種模式下,開發(fā)者可以快速和低成本的部署Apollo進(jìn)行真實(shí)道路測(cè)試和運(yùn)營。
3相對(duì)地圖在自動(dòng)駕駛中的使用
下面,我們用一個(gè)例子來說明相對(duì)地圖是如何應(yīng)用到實(shí)際的路測(cè)中。在這個(gè)例子中我們將聚焦在模式2,即以引導(dǎo)為主,約束信息是來自感知的實(shí)時(shí)地圖信息。
上圖是我們?cè)诘貓D上截取的一個(gè)路段。我們假設(shè)要在該路段部署自動(dòng)駕駛。
在部署之前,我們首先要做的是收集人工駕駛軌跡。如上圖所示,紅色的軌跡是我們收集的軌跡數(shù)據(jù),這個(gè)數(shù)據(jù)覆蓋了幾乎所有的車道及行車可能。
在實(shí)際操作中,可只收集用于無人駕駛的車道。這個(gè)收集過程可以由專業(yè)的司機(jī)專門來收集,駕駛過程中盡量避免換道,一個(gè)車道行駛一遍即可。
此外,這個(gè)過程也可以由普通用戶眾包完成,這種情況下,由于數(shù)據(jù)收集中可能存在噪音以及不可控的換道,每個(gè)車道需要收集多次行駛路徑。另外眾包的車型也要保證相似。
人工駕駛軌跡收集完成后會(huì)被自動(dòng)轉(zhuǎn)化成指引線。這個(gè)過程是一個(gè)全自動(dòng)的過程,無需任何人工標(biāo)注。有噪音的數(shù)據(jù),以及過于頻繁換道的數(shù)據(jù)在這個(gè)過程中也會(huì)被濾掉。
如上圖所示,最終生成的指引線(綠色)以車道為單位,也包含了車道之間的連接,比如掉頭和左右拐彎。以上就是我們部署自動(dòng)駕駛前的準(zhǔn)備工作。
有了指引線之后,我們就可以在該區(qū)域開始自動(dòng)駕駛了。我們假設(shè),車在A點(diǎn),想要自動(dòng)駕駛到B點(diǎn)。我們首先向普通導(dǎo)航地圖,比如百度地圖,請(qǐng)求道路級(jí)別的routing。
如上圖所示,道路中間的藍(lán)色線段,就是我們得到的從A點(diǎn)到B點(diǎn)的道路級(jí)別routing。
然后我們拿道路級(jí)別的routing去和之前生成的指引線進(jìn)行匹配,得到A點(diǎn)到B點(diǎn)之間的指引線。
如上圖所示,我們拿到了三條橘黃色的指引線。給出三條指引線是為了給下游的規(guī)劃和控制模塊更多的靈活性。
比如,當(dāng)A點(diǎn)和B點(diǎn)之間有障礙物時(shí),無人車可以切換到相鄰車道繞過障礙物,再切換到和B點(diǎn)相連的車道。為了使規(guī)劃和控制模塊更好的執(zhí)行換道的策略,我們?yōu)槊恳粭l指引線設(shè)置了不同的優(yōu)先級(jí),橫向越接近終點(diǎn)的指引線優(yōu)先級(jí)越高。
無人車在進(jìn)行無人駕駛的時(shí)候,相對(duì)地圖模塊根據(jù)指引線和實(shí)時(shí)車道線實(shí)時(shí)生成地圖,并以10Hz的頻率進(jìn)行更新。
在這個(gè)過程中,指引線被轉(zhuǎn)化為車身坐標(biāo)系,并作為車道中心線;從感知模塊的到的車道線作為車道的左右邊界;以上信息被融合在一起產(chǎn)生相對(duì)地圖。
在無人駕駛過程中,相對(duì)地圖會(huì)有兩種特殊情況。
第一種情況是由于定位不準(zhǔn),指引線暫時(shí)不可用。在這種情況下,相對(duì)地圖只根據(jù)感知的實(shí)時(shí)車道線來生成地圖信息,無人車可以繼續(xù)進(jìn)行L3級(jí)別的無人駕駛,屬于車道保持或者自適應(yīng)續(xù)航控制狀態(tài)。
這種情況適用于短暫的定位不準(zhǔn)確,比如過隧道或者橋洞,一旦定位恢復(fù),相對(duì)地圖會(huì)自動(dòng)切換回正常的指引線+實(shí)時(shí)車道線模式。
第二種特殊情況是感知無法檢測(cè)到車道線,如上圖所示,車輛行駛在路口(或者老舊路面),沒有車道線。這時(shí)相對(duì)地圖的生成只根據(jù)指引線,車道邊界會(huì)根據(jù)歷史數(shù)據(jù)進(jìn)行預(yù)測(cè),或者根據(jù)左右側(cè)指引線進(jìn)行估算。
從上面的例子,大家可以看出指引線在自動(dòng)駕駛中起著多種不同的作用:
首先,指引線連提供了車道級(jí)別的導(dǎo)航,它接著出發(fā)點(diǎn)和目的地,保證無人車能夠達(dá)到終點(diǎn)。
第二,指引線會(huì)被規(guī)劃模塊用作路徑規(guī)劃的參考線,為路徑規(guī)劃提供安全性和舒適性的引導(dǎo)。
第三,指引線是高清地圖的載體。在進(jìn)行自動(dòng)駕駛時(shí),我們無需加載整張高清地圖,而是沿著指引線,加載指引線周邊的高清地圖數(shù)據(jù)。
最后,指引線還是生成相對(duì)地圖的重要數(shù)據(jù)之一。
4相對(duì)地圖和指引者的設(shè)計(jì)細(xì)節(jié)及特點(diǎn)總結(jié)
下面,我們來看一下生成指引線的模塊,指引者,是如何設(shè)計(jì)和實(shí)現(xiàn)的。
指引者是一個(gè)云端服務(wù),如上圖的中間部分所示,指引者有兩個(gè)數(shù)據(jù)庫,一個(gè)存放指引線數(shù)據(jù),另外一個(gè)存放高清地圖數(shù)據(jù)。除此之外,還有一系列的數(shù)據(jù)處理及算法功能模塊。為了使指引者能夠提供指引線,我們首先要把線下采集的人工駕駛路徑數(shù)據(jù)上傳到云端(如圖中步驟1所示)。
指引者會(huì)對(duì)數(shù)據(jù)進(jìn)行一系列的處理,最終生成指引線并存儲(chǔ)在數(shù)據(jù)庫中。之后,用戶會(huì)在Dreamview中選擇目的地發(fā)出導(dǎo)航請(qǐng)求(如圖所示步驟2)。
指引者中的導(dǎo)航請(qǐng)求處理器會(huì)接受導(dǎo)航請(qǐng)求并轉(zhuǎn)發(fā)給百度地圖API(圖中步驟3),并從百度地圖API得到道路級(jí)別的導(dǎo)航(步驟4)。
導(dǎo)航處理器會(huì)根據(jù)道路級(jí)別的導(dǎo)航進(jìn)行指引線匹配(步驟5)得到指引線。
如果有相應(yīng)的高清地圖數(shù)據(jù)存在,指引線會(huì)和周邊的高清地圖進(jìn)行關(guān)聯(lián)(步驟6)。
最終,指引線會(huì)傳回給Dreamview(步驟7)。
Dreamview得到指引線數(shù)據(jù)后發(fā)送給下游模塊,比如預(yù)測(cè)模塊和規(guī)劃模塊。
除了云端服務(wù),我們也提供了一個(gè)離線指引者的工具,供開發(fā)者在沒有網(wǎng)絡(luò)的情況下,或者在私人封閉測(cè)試場(chǎng)中使用指引線和相對(duì)地圖。這個(gè)工具可以把收集到的人工駕駛數(shù)據(jù)進(jìn)行一系列的處理包括:路徑抽取,路徑平滑,和指引線產(chǎn)生。
最終把生成的指引線數(shù)據(jù)發(fā)送到 ROS topic “/apollo/navigation”。 這樣相對(duì)地圖就可以收到指引線,并產(chǎn)生相對(duì)地圖。 關(guān)于離線指引者的具體使用發(fā)法,大家可以參照我們Github上的文檔,鏈接列在了上圖中。
這個(gè)文檔是我們的外部開發(fā)者根據(jù)他們的實(shí)踐經(jīng)驗(yàn)總結(jié)的,寫的非常詳細(xì)。
在上面的使用相對(duì)地圖的例子中,我們多次提到百度地圖API。下面為大家總結(jié)一下,相對(duì)地圖是如何利用和集成百度地圖API,以及這樣的設(shè)計(jì)帶來的好處。
首先,我們利用百度地圖為用戶提供發(fā)送導(dǎo)航請(qǐng)求的界面。如上圖所示,用戶可以在地圖界面中選擇一個(gè)目的地,然后點(diǎn)擊左上角的紅色Route按鈕。這樣的一個(gè)體驗(yàn)就像用戶在手機(jī)上使用百度地圖導(dǎo)航一樣。
其次,在無人駕駛過程中,我們會(huì)把無人車的位置實(shí)時(shí)顯示在地圖上,為乘客提供當(dāng)前位置的信息。如上圖所示,百度地圖中間的紅色位置圖標(biāo)就是無人車的當(dāng)前位置。
最后,也是最重要的,我們利用百度地圖的導(dǎo)航API為指引者提供了道路級(jí)別的導(dǎo)航。這樣的道路級(jí)別導(dǎo)航保證了行車線路的準(zhǔn)確性,同時(shí)也考慮了實(shí)時(shí)路況,為最終匹配到精確的合理的指引線提供了保障。
上面這張圖總結(jié)相對(duì)圖和指引者和Apollo中各個(gè)模塊之間的關(guān)系。這張圖的中間是相對(duì)地圖模塊,它依賴于感知,定位和指引線。指引線可以由云端指引線產(chǎn)生,也可以由離線的指引者工具產(chǎn)生。相對(duì)地圖會(huì)融合各種地圖信息,根據(jù)路況條件和輸入數(shù)據(jù),工作在不同的模式下。生成的相對(duì)地圖數(shù)據(jù),會(huì)傳給預(yù)測(cè)和規(guī)劃模塊。云端指引線連接著高清地圖和百度地圖API。
最后,總結(jié)一下相對(duì)地圖的三種工作模式:
圖中的模式1和模式2就是之前提到的指引線+高清地圖方案和指引線+基于感知的實(shí)時(shí)地圖信息方案。模式0是模式2的一種特例,只依賴于基于感知的實(shí)時(shí)地圖信息。
首先對(duì)于適用場(chǎng)景,模式0由于沒有指引線,適用于短時(shí)間的車道保持和巡航。模式1由于有高清地圖信息,適用于復(fù)雜的駕駛場(chǎng)景,比如城市道路。模式2由于只有一些基本的實(shí)時(shí)地圖信息,適用于簡(jiǎn)單駕駛場(chǎng)景,比如高速或者鄉(xiāng)村道路。
對(duì)于自動(dòng)駕駛級(jí)別,模式0屬于L3級(jí)別,模式1屬于L4級(jí)別。模式2由于有限的地圖信息,屬于前兩種模式之間。
關(guān)于部署成本,由于模式0只依賴于感知算法,沒有線下數(shù)據(jù)收集的需求,部署成本幾乎為零。模式1由于依賴高清地圖,部署成本高。模式2雖然依賴指引線,但指引線的制作成本低,總體部署成本也偏低。
關(guān)于對(duì)定位的依賴:由于模式0只使用感知數(shù)據(jù),可以完全不依賴定位。模式1和模式2使用指引線或者高清地圖,所以對(duì)定位有強(qiáng)依賴。
最后,關(guān)于對(duì)道路標(biāo)示的要求,即路面交通線的清晰程度:由于模式0是基于視覺對(duì)車道線進(jìn)行識(shí)別,對(duì)標(biāo)示清晰度要求高。其他兩種模式由于有了指引線或者高清地圖作為參考,對(duì)道路標(biāo)示要求低。
以上就是對(duì)于相對(duì)地圖的介紹和分享。非常感謝大家的參加!更多Apollo相關(guān)的技術(shù)干貨也可以繼續(xù)關(guān)注后續(xù)的社群分享。
相關(guān)學(xué)習(xí)資料和自動(dòng)駕駛相關(guān)技術(shù)內(nèi)容,大家可以關(guān)注【Apollo開發(fā)者社區(qū)】的微信公眾號(hào)來獲取,也可以在Apollo GitHub上提出技術(shù)問題與我們互動(dòng),歡迎大家溝通交流!
Q&A
1
Q:相對(duì)地圖如何擴(kuò)展成多車道,目前沒有車道線檢測(cè)是否也可以實(shí)時(shí)生成相對(duì)地圖,百度地圖的routing API怎么和相對(duì)地圖結(jié)合的?
A:需要采集多條指引線,每一個(gè)車道一條。沒有車道線檢測(cè),也可以只依賴指引線生成相對(duì)地圖。在模擬器里的百度地圖的界面上選擇終點(diǎn),點(diǎn)擊route就可以。前提是云端要有相應(yīng)路段的指引線。
2
Q:Apollo有一個(gè)分支叫mobileeye_radar,為什么已經(jīng)有十個(gè)月沒有更新了?請(qǐng)問是遇到了什么問題呢?
A:這個(gè)分支已經(jīng)合入了master,所以沒有更新。這個(gè)分支里的主要更新可參照
https://github.com/ApolloAuto/apollo/tree/mobileye_radar/modules/third_party_perception
3
Q:Flocalization模塊中用于lidar定位的地圖需要rtk提供的高精pose 和對(duì)應(yīng)的lidar數(shù)據(jù)來生成,鑒于rtk成本較高,請(qǐng)問這里能否用其他方式來提供足夠精度的pose?
A:我們也在探索和開發(fā)基于攝像頭/圖像的定位方法,不依賴RTK。
4
Q:使用相對(duì)地圖的規(guī)劃和使用高精度地圖的規(guī)劃有什么區(qū)別?使用相對(duì)地圖時(shí)如何實(shí)現(xiàn)變道行駛?
A:規(guī)劃是通用的,沒有區(qū)別。相對(duì)地圖支持多車道,可以在規(guī)劃和控制模塊中實(shí)現(xiàn)變道行駛。
5
Q:百度API提供的導(dǎo)航地圖、車道線、實(shí)時(shí)感知的三維場(chǎng)景,這三者的坐標(biāo)都是經(jīng)過坐標(biāo)偏轉(zhuǎn)加密的嗎?
A:百度API的數(shù)據(jù)是經(jīng)過坐標(biāo)偏轉(zhuǎn)加密的。車道線和實(shí)時(shí)感知的數(shù)據(jù)是基于車身坐標(biāo)系的。我們?cè)谙到y(tǒng)中已經(jīng)做了對(duì)齊。對(duì)開發(fā)者來說是無感的。
-
自動(dòng)駕駛
+關(guān)注
關(guān)注
784文章
13784瀏覽量
166392 -
Apollo
+關(guān)注
關(guān)注
5文章
342瀏覽量
18444
原文標(biāo)題:社群分享內(nèi)容 | Apollo相對(duì)地圖:基于人工駕駛路徑的實(shí)時(shí)地圖生成
文章出處:【微信號(hào):Apollo_Developers,微信公眾號(hào):Apollo開發(fā)者社區(qū)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論