在CAN節點的設計中,我們通常為了總線的通訊更為可靠,為CAN接口增加各種器件,但實際并非所有應用都需要,過多防護不僅增加成本,而且器件的寄生參數必然影響信號質量。本文將簡單介紹共模電感用于總線的作用。
我們在實際應用中看到許多CAN產品會使用共模電感,但在常規測試中卻看不到它對哪一項指標有明顯改善,反而影響波形質量。
許多工程師為了以防萬一,確保可靠,會對CAN增加全面外圍電路。CAN芯片已經有很好的抗靜電,瞬態電壓能力,有些收發器本身也有很好的EMC性能,我們在應用中可根據設計要求逐個增加防護、濾波等外圍。
對于CAN總線要不要加共模電感,我們主要從電磁兼容方面考慮。
一、共模電感
先介紹共模干擾。圖1、圖2分別給出了差模和共模干擾及其傳輸路徑。圖中的驅動器及接收器為差分信號傳輸,類似CAN總線。差模干擾產生于兩條傳輸線之間,共模干擾則在兩條線中同時產生,其電勢是以地為參考。
圖1 差模干擾及傳輸路徑
圖2 共模干擾及傳輸路徑
共模電感是在一個磁環的上下兩個半環上,分別繞制相同匝數但繞向相反的線圈。共模干擾是相同的,所以在磁環中形成的磁力線相互疊加,電感阻抗大從而起到衰減干擾的作用。對于差模信號在磁環中形成的磁力線是相互抵消的,并沒有抑制作用,僅有線圈電阻及很小的漏感對差模信號有略微影響。
共模電感本質上是一個雙向濾波器,一方面濾除信號線上的共模信號干擾,另一方面抑制信號線本身不向外發出電磁干擾。圖2中的干擾信號則能很好地被共模電感抑制,而差分信號則幾乎無影響。
二、CAN總線特性
CAN收發器內部CANH、CANL分別為開源,開漏輸出形式,驅動電路如圖3所示。這種方式可以使總線輕松實現顯性電平的驅動,而隱性電平則通過終端電阻放電來實現。
圖3 CAN收發器驅動電路
總線固有的差分傳輸形式使得CAN對于共模干擾有很好的抑制能力,如圖4所示。通過CANH、CANL相減可很好地消除來自外部的共模干擾,但CANH、CANL并非理想對稱,快速上升的跳變沿,這些均會帶來EMC問題。我們通過示波器看總線波形很完美,測試靜電,EFT,浪涌,傳導騷擾抗擾均無異常。但測試傳導發射,則不能滿足限值要求,看起來很正常的總線實際卻向外在發送傳導干擾。
圖4 CAN傳輸波形
三、為什么要加共模電感?
對于CAN接口的EMC問題,除了選用更好性能,符號要求的CAN收發芯片,另一種簡單的方法就是對CAN接口增加外圍,共模電感是一種很好的選擇。在現有汽車電子CISPR 25標準中,對傳導騷擾限值有很嚴格要求。許多CAN收發器均會超過限值。如圖5分別為按照車規限制測試增加和不加共模電感的CAN接口傳導騷擾,共模電感值為51μH,可以看到在各個頻段下對噪聲改善較為明顯,測試結果仍有很大裕量。
圖5 傳導騷擾測試
共模電感對降低傳導騷擾有明顯作用,可幫助我們快速通過測試要求,滿足現有汽車用要求,但總線增加共模電感也會帶來兩個問題:諧振和瞬態電壓。共模電感不可避免地會有寄生電感,直流電阻,考慮總線節點數,通信距離等因素,會引起諧振,影響總線信號質量,如圖6,綠色波形為增加共模電感的總線波形,信號下降沿已有明顯的諧振。另外,共模電感感量較大,且直接節在收發器接口,實際應用中出現短路,熱插拔等狀態會使共模電感兩端產生瞬態高壓,嚴重時會直接損壞收發器。
圖6 增加共模電感的CAN波形
四、總結
共模電感用于總線的優缺點較為明顯,它可以濾除信號線的共模電磁干擾,衰減差分信號高頻部分,抑制CAN接口自身向外發出的電磁干擾,在傳導騷擾方面有很好地改善作用,但應用仍要考慮其帶來的諧振與瞬態電壓,這些在長距離,多節點通訊中對總線信號質量是不利的,對于一般工業應用對傳導發射并無嚴格要求,因此可不增加共模電感。
廣州致遠電子有限公司基于多年的總線防護設計積累推出了高防護等級隔離模塊——CTM1051(A)HP系列。該系列符合國際ISO11898-2標準,靜電防護等級可達接觸±8kV,空氣放電±15kV,浪涌防護可達±4kV隔離CAN解決方案,具體如下圖7所示,能夠適用于各種惡劣的工業現場環境。應用簡便,即插即用,應用原理圖如下圖8所示。
圖7 CTM1051(A)HP的EMC性能
圖8 應用原理圖
-
CAN總線
+關注
關注
145文章
1946瀏覽量
130727 -
共模電感
+關注
關注
9文章
546瀏覽量
26966
原文標題:CAN總線到底要不要加共模電感?
文章出處:【微信號:ZLG_zhiyuan,微信公眾號:ZLG致遠電子】歡迎添加關注!文章轉載請注明出處。
發布評論請先 登錄
相關推薦
評論