近日,來自愛丁堡大學(xué)的研究人員提出了一種結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹模型的新型模型——深度神經(jīng)決策樹(Deep Neural Decision Trees, DNDT)。
這種模型不僅具有了基于樹模型的可解釋性的優(yōu)點,同時還可以利用神經(jīng)網(wǎng)絡(luò)中的梯度下降法來進(jìn)行訓(xùn)練,并可方便地利用現(xiàn)有的神經(jīng)網(wǎng)絡(luò)框架實現(xiàn),將使得神經(jīng)網(wǎng)絡(luò)的過程得以用樹的方式得到有效的解釋。論文的作者均來自于愛丁堡大學(xué)信息學(xué)院感知、運動和行為研究所ipab。
對于感知模型來說可解釋性是十分重要的,特別是在一些涉及倫理、法律、醫(yī)學(xué)和金融等場景下尤其如此,同樣在關(guān)鍵領(lǐng)域的控制中,我們希望能夠回溯所有的步驟來保證模型因果邏輯和結(jié)果的正確性。深度神經(jīng)網(wǎng)絡(luò)在計算機(jī)視覺、語音識別和語言模型等很多領(lǐng)域取得了成功,但作為缺乏可解釋性的黑箱模型,限制了它在模型必須求證因果領(lǐng)域的應(yīng)用,在這些領(lǐng)域中我們需要明確決策是如何產(chǎn)生的以便評測驗證整個決策過程。除此之外,在類似于商業(yè)智能等領(lǐng)域,知曉每一個因素是如何影響最終決策比決策本身有時候更為重要。與此不同的是,基于決策樹模型(包括C4.5和CART等)擁有清晰的可解釋性,可以追隨樹的結(jié)構(gòu)回溯出決策產(chǎn)生的因由。
愛丁堡大學(xué)的研究人員們基于樹和神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)提出了一種新型的模型——深度神經(jīng)決策樹(DNDT),并探索了樹和網(wǎng)絡(luò)之間的相互作用。DNDT是一種具有特殊結(jié)構(gòu)的神經(jīng)網(wǎng)絡(luò),任意一種配置下的DNDT都對應(yīng)著決策樹,這使其具有了可解釋性。同時由于DNDT實現(xiàn)自神經(jīng)網(wǎng)絡(luò),使得它擁有了很多傳統(tǒng)決策樹不曾具有的特性:
1.DNDT可以通過已有的神經(jīng)網(wǎng)絡(luò)工具便捷的實現(xiàn),可能只需要幾行即可;
一個實現(xiàn)的例子
2.所有的參數(shù)可以通過隨機(jī)梯度下降法(SGD)同時優(yōu)化,代替了復(fù)雜的貪婪優(yōu)化過程;
3.具有大規(guī)模處理數(shù)據(jù)的能力,可以利用mini-batch和GPU加速;
4.可以作為一個模塊插入到現(xiàn)有的神經(jīng)網(wǎng)絡(luò)模型中,并整體訓(xùn)練。
在這種網(wǎng)絡(luò)中研究人員們使用了一種稱為soft binning function的函數(shù),并將它用于DNDT中的分支操作。一個典型的soft binning函數(shù)可以得到輸入標(biāo)量的二進(jìn)制值,與Hard binning不同的是,這是一種可微的近似。這使得決策樹中的的參數(shù)是可導(dǎo)的,也就可以利用梯度下降法來進(jìn)行訓(xùn)練了。下式是MDMT中的一層神經(jīng)元表示:
其中w為權(quán)重參數(shù)[1,2,。。。,n+1],b表示為[0,-β1,-β2...-βn],代表了n個分支點。式中的τ代表了溫度因子,其趨向于0時將為生成one-hot編碼。下圖是不同τ作用下的softbinning函數(shù):
其中x在[0,1]區(qū)間內(nèi),此時的分割點為0.33和0.66,三個圖分別代表了τ為1,0,1和0.01的情況,越小意味著分支越陡峭。其中,
o1 = x
o2 = 2x-0.33
o3 = 3x-0.99
在決策過程中,通過上式給出的二進(jìn)制函數(shù)利用克羅內(nèi)克內(nèi)積來實現(xiàn),下圖中顯示了DNDT在Iris數(shù)據(jù)集上的學(xué)習(xí)過程,上半部分描述了深度神經(jīng)決策樹的運行過程,其中紅色表示為可訓(xùn)練的變量,黑色數(shù)字為常量。下半部分作為對比顯示了先前決策樹的分類過程。
通過本文提出的方法,研究人員將決策樹的訓(xùn)練過程轉(zhuǎn)換為了訓(xùn)練二進(jìn)制分支點和葉子分類器。同時由于前傳過程是可微的,所以所有的點都可以同時利用SGD的方法來訓(xùn)練。由于可以利用與神經(jīng)網(wǎng)絡(luò)類似的mini-batch,DNDT可以便捷的實例規(guī)?;?。但目前存在的問題是克羅內(nèi)克積的存在使得特征的規(guī)模化不易實現(xiàn)。目前的解決方案是引入多棵樹來來訓(xùn)練特征集中的子特征組合,避免了較“寬”的數(shù)據(jù)。
研究人員通過實驗驗證了中模型的有效性,在常見的14個數(shù)據(jù)集上(特別是Tabular類型的數(shù)據(jù))取得了較好的結(jié)果。其中決策樹使用了超參數(shù),“基尼”尺度和“best”分支;神經(jīng)網(wǎng)絡(luò)使用了兩個隱藏層共50個神經(jīng)元作為基準(zhǔn)。而DNDT則使用了1最為分支點數(shù)目的超參數(shù)。
研究顯示DNDT模型隨著分割點的增加,整體激活的比重卻在下降,顯示了這種模型具有正則化的作用。
同時研究還顯示了分割點數(shù)量對于每一個特征的影響;
并利用了GPU來對計算過程進(jìn)行了加速。
在未來還會探索DNDT與CNN的結(jié)合與應(yīng)用,并將SGD應(yīng)用到整個模型的全局優(yōu)化中去,并嘗試基于決策樹的遷移學(xué)習(xí)過程。
-
神經(jīng)網(wǎng)絡(luò)
+關(guān)注
關(guān)注
42文章
4789瀏覽量
101596 -
gpu
+關(guān)注
關(guān)注
28文章
4830瀏覽量
129778 -
決策樹
+關(guān)注
關(guān)注
3文章
96瀏覽量
13646
原文標(biāo)題:愛丁堡大學(xué)研究人員提出「深度神經(jīng)決策樹」,可結(jié)合深度神經(jīng)網(wǎng)絡(luò)和樹模型
文章出處:【微信號:thejiangmen,微信公眾號:將門創(chuàng)投】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論