射頻功率的頻域測量是利用頻譜和矢量信號分析儀所進行的最基本的測量。這類系統必須符合有關標準對功率傳輸和寄生噪聲輻射的限制,還要配有合適的測量技術來避免誤差。像頻率范圍、中心頻率、分辨帶寬(RBW)和測量時間這些有關頻率的關鍵控制都會影響測量結果。
頻率范圍指的是分析儀所能捕獲的總頻譜分量,而中心頻率相當于頻率范圍的中心。應該注意像頻率范圍這類頻率控制決定了儀器前面板上的頻率范圍。另一方面,根據頻率范圍的大小不同,FFT信號分析儀有兩個截然不同的采集模式。
儀器中高達RBW的頻率范圍的實現方式是:對一段頻率進行下變頻,然后對下變頻信號進行數字化。而對于超出RBW的頻率范圍,按順序對頻譜段進行變頻和數字化。RBW控制頻率軸上的頻率分辨率。在傳統的分析儀中,利用一個窄帶濾波器來掃描頻率范圍來實現頻譜顯示。濾波器帶寬決定了頻率軸上的分辨率,因此也是控制的標志。
與此同時,采用FFT的分析儀沒有模擬濾波器,而是采用FFT和相關的窗口參數來確定頻率分辨率或者 RBW.與傳統的頻譜分析儀不一樣,目前最新的采用FFT的分析儀可以選擇窗口來限制頻譜泄漏并改善頻域中間隔較小頻段的分辨率。RBW頻率分辨率與FFT的抽頭的寬度是什么關系?表1顯示了在新型的RF信號分析儀中RBW頻率分辨率參數與FFT抽頭寬度的關系。
表1:RBW頻率分析分辨率與FFT分析儀的抽頭寬度相關
RBW(ResolutionBandwidth)。RBW代表兩個不同頻率的信號能夠被清楚的分辨出來的最低頻寬差異,兩個不同頻率的信號頻寬如低于頻譜分析儀的RBW,此時該兩信號將重疊,難以分辨,較低的RBW固然有助於不同頻率信號的分辨與量測,低的RBW將濾除較高頻率的信號成份,導致信號顯示時產生失真,失真值與設定的RBW密切相關,較高的RBW固然有助於寬頻帶信號的偵測,將增加雜訊底層值(Noise Floor),降低量測靈敏度,對於偵測低強度的信號易產生阻礙,因此適當的RBW寬度是正確使用頻譜分析儀重要的概念
采用FFT的分析儀具有窗口選擇,用來限制頻譜泄漏并改善頻域中間隔較小頻譜的分辨率。而傳統的頻譜分析儀則沒有這一功能。傳統掃描式分析儀的測量時間(或掃描時間)與RBW的平方成反比,這是由模擬濾波器的建立時間確定的。如果要通過降低RBW來改善頻率分辨率,則掃描時間要呈指數增加。
相反,隨著RBW的降低,FFT信號分析儀所進行的采集更長,運算量也更大。隨著DSP器件速度的加快,測量速度更快,從而實現更高的分辨率或更窄的RBW測量。
圖1:頻譜分析儀測量結果的頻率和幅度關系
幅度設置
不同的幅度控制也會影響測量結果,這些包括參考電平,衰減器設置和檢測模式。參考電平設置了頻譜分析儀的最大輸入范圍。它控制Y軸,這一點與示波器上的"volts/div"相似,必須將其設置到剛剛大于所期望的最大功率測量值。
最佳參考電平的取值要使得最小的儀器失真和最小的噪聲基底取得平衡。當能夠認可失真時,這樣做會改善儀器的靈敏度,并且保證在測量中將其排除在外。
衰減器設置控制也決定儀器的輸入范圍。該設置通常被設置到自動模式,軟件根據參考電平來調整衰減器的值。
在固件中,頻譜分析儀將顯示器的Y軸與參考電平或衰減器聯動在一起。注意,參考電平和衰減器設置都影響可編程衰減器,故只需設置其中的一個即可。
檢測模式是另一種幅度控制方式,可用于傳統的掃描頻譜分析儀,但不能用于基于FFT的分析儀。可分為普通、峰值、采樣或負峰值等模式,具體檢測模式決定了頻譜分析儀如何減少頻譜信息的,或者說如何壓縮頻譜信息。
另外它還影響總的功率測量。分析儀將從數據減少策略中獲益。這將使檢測模式改變功率測量。
表2:頻譜分析儀測量模式能夠影響功率測量結果
影響精度的因素
頻譜分析儀采用起始和終止頻率之間的頻率掃描。而起始頻率由來自高精度的時間基準信號合成。于是,測量精度由模擬斜坡信號和IF濾波器的中心頻率所決定。
頻譜分析儀是研究電信號頻譜結構的儀器,用于信號失真度、調制度、譜純度、頻率穩定度和交調失真等信號參數的測量,可用以測量放大器和濾波器等電路系統的某些參數,是一種多用途的電子測量儀器。它又可稱為頻域示波器、跟蹤示波器、分析示波器、諧波分析器、頻率特性分析儀或傅里葉分析儀等。現代頻譜分析儀能以模擬方式或數字方式顯示分析結果,能分析1赫以下的甚低頻到亞毫米波段的全部無線電頻段的電信號。
基于FFT的分析儀,沒有這樣的模擬斜坡信號,故沒有這些因素的限制,從而在整個測量范圍內具有一致的精度。范圍內的精度則取決于時基和測量算法,故可以比較容易地獲得頻率精度和重復性。
在傳統型掃描分析儀中,頻率誤差的原因包括基準頻率誤差,頻率范圍精度和RBW.相應地,在基于FFT的分析儀中的頻率誤差則包括基準頻率誤差和RBW,具體取決于測量算法,變化范圍為RBW的>50%到<10%之間。
為了比較這些誤差,就必須忽略基準頻率誤差,這是因為可以使用一個像銣時鐘這類的精密頻率源來對其進行補償。在掃頻式頻譜分析儀中,測量性能將受到影響,除非采用最優化的技術,例如將100MHz的頻率放置到頻率范圍的中心。
如果采用較小的RBW,意味著測試時間的拉長,這是因為掃描時間的問題,因為通常的頻譜分析儀中需要150-200ms的掃描時間。測量算法限定了基于FFT的分析儀的測量精度。
基于FFT的分析儀采用可以實現精確測量的高RBW設置,即便是沒有利用精度優化的測量技術。這意味著在相同的測試時間內可以實現更快和更精密的測量。信號分析儀能夠執行長度小于20ms的測試樣本,這比頻譜分析儀高6倍。
除非采用了合適的測量設置,否則即便是對于同一臺測試儀器,也會導致的測量結果很大變化。因此,深入理解工作原理對正確地設置測量儀器來說是至關重要的。
-
濾波器
+關注
關注
161文章
7797瀏覽量
178004 -
示波器
+關注
關注
113文章
6240瀏覽量
184804 -
頻率
+關注
關注
4文章
1496瀏覽量
59212
發布評論請先 登錄
相關推薦
評論