本文主要是關于伺服電機的相關介紹,并著重對PLC發脈沖給伺服電機不轉的解決辦法進行了詳盡的闡述。
伺服電機
伺服電機(servo motor )是指在伺服系統中控制機械元件運轉的發動機,是一種補助馬達間接變速裝置。伺服電機可使控制速度,位置精度非常準確,可以將電壓信號轉化為轉矩和轉速以驅動控制對象。伺服電機轉子轉速受輸入信號控制,并能快速反應,在自動控制系統中,用作執行元件,且具有機電時間常數小、線性度高、始動電壓等特性,可把所收到的電信號轉換成電動機軸上的角位移或角速度輸出。分為直流和交流伺服電動機兩大類,其主要特點是,當信號電壓為零時無自轉現象,轉速隨著轉矩的增加而勻速下降。
1、伺服系統(servo mechanism)是使物體的位置、方位、
狀態等輸出被控量能夠跟隨輸入目標(或給定值)的任意變化的自動控制系統。伺服主要靠脈沖來定位,基本上可以這樣理解,伺服電機接收到1個脈沖,就會旋轉1個脈沖對應的角度,從而實現位移,因為,伺服電機本身具備發出脈沖的功能,所以伺服電機每旋轉一個角度,都會發出對應數量的脈沖,這樣,和伺服電機接受的脈沖形成了呼應,或者叫閉環,如此一來,系統就會知道發了多少脈沖給伺服電機,同時又收了多少脈沖回來,這樣,就能夠很精確的控制電機的轉動,從而實現精確的定位,可以達到0.001mm。直流伺服電機分為有刷和無刷電機。有刷電機成本低,結構簡單,啟動轉矩大,調速范圍寬,控制容易,需要維護,但維護不方便(換碳刷),產生電磁干擾,對環境有要求。因此它可以用于對成本敏感的普通工業和民用場合。
無刷電機體積小,重量輕,出力大,響應快,速度高,慣量小,轉動平滑,力矩穩定??刂茝碗s,容易實現智能化,其電子換相方式靈活,可以方波換相或正弦波換相。電機免維護,效率很高,運行溫度低,電磁輻射很小,長壽命,可用于各種環境。
2、交流伺服電機也是無刷電機,分為同步和異步電機,目前運動控制中一般都用同步電機,它的功率范圍大,可以做到很大的功率。大慣量,最高轉動速度低,且隨著功率增大而快速降低。因而適合做低速平穩運行的應用。
3、伺服電機內部的轉子是永磁鐵,驅動器控制的U/V/W三相電形成電磁場,轉子在此磁場的作用下轉動,同時電機自帶的編碼器反饋信號給驅動器,驅動器根據反饋值與目標值進行比較,調整轉子轉動的角度。伺服電機的精度決定于編碼器的精度(線數)。
交流伺服電機和無刷直流伺服電機在功能上的區別:交流伺服要好一些,因為是正弦波控制,轉矩脈動小。直流伺服是梯形波。但直流伺服比較簡單,便宜。
發展歷史
自從德國MANNESMANN的Rexroth公司的Indramat分部在1978年漢諾威貿易博覽會
上正式推出MAC永磁交流伺服電動機和驅動系統,這標志著此種新一代交流伺服技術已進入實用化階段。到20世紀80年代中后期,各公司都已有完整的系列產品。整個伺服裝置市場都轉向了交流系統。早期的模擬系統在諸如零漂、抗干擾、可靠性、精度和柔性等方面存在不足,尚不能完全滿足運動控制的要求,近年來隨著微處理器、新型數字信號處理器(DSP)的應用,出現了數字控制系統,控制部分可完全由軟件進行,分別稱為直流伺服系統、三相永磁交流伺服系統。
到目前為止,高性能的電伺服系統大多采用永磁同步型交流伺服電動機,控制驅動器多采用快速、準確定位的全數字位置伺服系統。典型生產廠家如德國西門子、美國科爾摩根和日本松下及安川等公司。
日本安川電機制作所推出的小型交流伺服電動機和驅動器,其中D系列適用于數控機床(最高轉速為1000r/min,力矩為0.25~2.8N.m),R系列適用于機器人(最高轉速為3000r/min,力矩為0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六個系列。20世紀90年代先后推出了新的D系列和R系列。由舊系列矩形波驅動、8051單片機控制改為正弦波驅動、80C、154CPU和門陣列芯片控制,力矩波動由24%降低到7%,并提高了可靠性。這樣,只用了幾年時間形成了八個系列(功率范圍為0.05~6kW)較完整的體系,滿足了工作機械、搬運機構、焊接機械人、裝配機器人、電子部件、加工機械、印刷機、高速卷繞機、繞線機等的不同需要。
以生產機床數控裝置而著名的日本發那科(Fanuc)公司,在20世紀80年代中期也推出了S系列(13個規格)和L系列(5個規格)的永磁交流伺服電動機。L系列有較小的轉動慣量和機械時間常數,適用于要求特別快速響應的位置伺服系統。
日本其他廠商,例如:三菱電動機(HC-KFS、HC-MFS、HC-SFS、HC-RFS和HC-UFS系列)、東芝精機(SM系列)、大隈鐵工所(BL系列)、三洋電氣(BL系列)、立石電機(S系列)等眾多廠商也進入了永磁交流伺服系統的競爭行列。
德國力士樂公司(Rexroth)的Indramat分部的MAC系列交流伺服電動機共有7個機座號92個規格。
德國西門子(Siemens)公司的IFT5系列三相永磁交流伺服電動機分為標準型和短型兩大類,共8個機座號98種規格。據稱該系列交流伺服電動機與相同輸出力矩的直流伺服電動機IHU系列相比,重量只有后者的1/2,配套的晶體管脈寬調制驅動器6SC61系列,最多的可供6個軸的電動機控制。
德國博世(BOSCH)公司生產鐵氧體永磁的SD系列(17個規格)和稀土永磁的SE系列(8個規格)交流伺服電動機和Servodyn SM系列的驅動控制器。
美國著名的伺服裝置生產公司Gettys曾一度作為Gould 電子公司一個分部(Motion Control Division),生產M600系列的交流伺服電動機和A600 系列的伺服驅動器。后合并到AEG,恢復了Gettys名稱,推出A700全數字化的交流伺服系統。
美國A-B(ALLEN-BRADLEY)公司驅動分部生產1326型鐵氧體永磁交流伺服電動機和1391型交流PWM伺服控制器。電動機包括3個機座號共30個規格。
I.D.(Industrial Drives)是美國著名的科爾摩根(Kollmorgen)的工業驅動分部,曾生產BR-210、BR-310、BR-510 三個系列共41個規格的無刷伺服電動機和BDS3型伺服驅動器。自1989年起推出了全新系列設計的摻鶼盜袛(Goldline)永磁交流伺服電動機,包括B(小慣量)、M(中慣量)和EB(防爆型)三大類,有10、20、40、60、80五種機座號,每大類有42個規格,全部采用釹鐵硼永磁材料,力矩范圍為0.84~111.2N.m,功率范圍為0.54~15.7kW。配套的驅動器有BDS4(模擬型)、BDS5(數字型、含位置控制)和Smart Drive(數字型)三個系列,最大連續電流55A。Goldline系列代表了當代永磁交流伺服技術最新水平。
愛爾蘭的Inland原為Kollmorgen在國外的一個分部,現合并到AEG,以生產直流伺服電動機、直流力矩電動機和伺服放大器而聞名。生產BHT1100、2200、3300三種機座號共17種規格的SmCo永磁交流伺服電動機和八種控制器。
法國Alsthom集團在巴黎的Parvex工廠生產LC系列(長型)和GC系列(短型)交流伺服電動機共14個規格,并生產AXODYN系列驅動器。
原蘇聯為數控機床和機器人伺服控制開發了兩個系列的交流伺服電動機。其中ДBy系列采用鐵氧體永磁,有兩個機座號,每個機座號有3種鐵心長度,各有兩種繞組數據,共12個規格,連續力矩范圍為7~35N.m。2ДBy系列采用稀土永磁,6個機座號17個規格,力矩范圍為0.1~170N.m,配套的是3ДБ型控制器。
近年日本松下公司推出的全數字型MINAS系列交流伺服系統,其中永磁交流伺服電動機有MSMA系列小慣量型,功率從0.03~5kW,共18種規格;中慣量型有MDMA、MGMA、MFMA三個系列,功率從0.75~4.5kW,共23種規格,MHMA系列大慣量電動機的功率范圍從0.5~5kW,有7種規格。
韓國三星公司近年開發的全數字永磁交流伺服電動機及驅動系統,其中FAGA交流伺服電動機系列有CSM、CSMG、CSMZ、CSMD、CSMF、CSMS、CSMH、CSMN、CSMX多種型號,功率從15W~5kW。
現在常采用(Powerrate)這一綜合指標作為伺服電動機的品質因數,衡量對比各種交直流伺服電動機和步進電動機的動態響應性能。功率變化率表示電動機連續(額定)力矩和轉子轉動慣量之比。
按功率變化率進行計算分析可知,永磁交流伺服電動機技術指標以美國I.D 的Goldline系列為最佳,德國Siemens的IFT5系列次之。
PLC發脈沖給伺服電機不轉的解決辦法
這種情況下電機不轉的原因有很多,需要一級一級排查原因。首先要確認的是通過伺服驅動器JOG電機是否會動作,然后再確認伺服的 工作模式/接收脈沖指令型式/接線。
查看一下脈沖輸出端口狀態,看看是否真的發送出去了脈沖,也可以在伺服控制器中的監控畫面中查看。
查看伺服是否已經上電使能,也就是伺服是否處于鎖定狀態,用手擰一下電機軸,如果轉不動就對了 轉的動說明還未使能。
看下伺服的脈沖信號端口是否正確,接線是否正確。
看下參數設置是否正確。按照伺服控制器說明書中的基本調試界面進行設置。
伺服電機常見問題解決方法
1、可以改變步進電機控制系統的方向電平信號
2、可以調整步進電機的接線來改變方向,具體做法如下:
對于兩相步進電機,只需將其中一相的步進電機線交換接入驅動器即可,如A+和A-交換。
對于三相步進電機,將相鄰兩相的步進電機線交換,如:A,B,C三相,交換A,B兩相就可。
二,步進電機振動大,噪聲也很大,什么原因?
遇到這種情況是因為步進電機工作在振蕩區,解決辦法:
1、改變輸入信號頻率CP來避開步進電機振蕩區。
2、采用細分步進電機驅動器,使步進電機步距角減少,運行平滑些。
三,為什么步進電機通電后,馬達不運行?
有以下幾種原因會造成步進電機不轉:
1、步進電機過載堵轉(此時步進電機有嘯叫聲)
2、步進電機是否處于脫機狀態
3、步進電機控制系統是否有脈沖信號給步進電機驅動器,接線是否有問題
四,步進電機抖動,不能連續運行,怎么辦?
遇到這種情況,首先檢查步進電機的繞組與驅動器連接有沒有接錯
檢查輸入步進電機脈沖信號頻率是否太高,是否升降頻設計不合理。
五、混合式步進電機驅動器的脫機信號FREE一般在什么情況下使用?
當脫機信號FREE為低電平時,步進電機驅動器輸出到馬達的電流被切斷,步進電機轉子處于自由狀態(脫機狀態)。在有些自動化設備中,如果在步進電機驅動器不斷電的情況下要求直接轉動步進電機軸(手動方式),就可以將FREE信號置低,使馬達脫機,進行手動操作或調節。手動完成后,再將FREE信號置高,以繼續自動控制步進電機。
確定步進電機驅動器的供電電壓,然后確定工作電流;供電電源電流一般根據驅動器的輸出相電流I來確定。如果采用線性電源,電源電流一般可取I的1.1~1.3倍;如果采用開關電源,電源電流一般可取I 的1.5~2.0倍。
七、如何選擇步進電機驅動器供電電壓?
步進電機驅動器,都是寬壓輸入,輸入電壓很大的范圍可以選擇;電源電壓通常根據步進電機的工作轉速和響應要求來選擇。如果步進電機工作轉速較高或響應要求較快,那么電壓取值也高,但注意電源電壓的紋波不能超過驅動器的最大輸入電壓,否則可能損壞驅動器。如果選擇較低的電壓有利于步進電機的平穩運行,振動小。
八、細分步進電機驅動器的細分數是否能代表精度?
細分也叫微步,主要目的是減弱或消除步進電機的低頻振動,提高步進電機的運轉精度只是細分技術的一個附帶功能。比如對步進角為1.8°的兩相混合式步進電機,如果細分步進電機驅動器的細分數設置為4,那么步進電機的運轉分辨率為每個脈沖0.45°,步進電機的精度能否達到或接近0.45°,還取決于細分步進電機驅動器的細分電流控制精度等其它因素。不同廠家的細分步進電機驅動器精度可能差別很大;細分數越大精度越難控制。
九、為什么步進電機的力矩會隨轉速的升高而下降?
當步進電機轉動時,步進電機各相繞組的電感將形成一個反向電動勢;頻率越高,反向電動勢越大。在它的作用下,步進電機隨頻率(或速度)的增大而相電流減小,從而導致步進電機力矩下降。
結語
關于伺服電機的相關介紹就到這了,如有不足之處歡迎指正。
-
plc
+關注
關注
5014文章
13353瀏覽量
464527 -
伺服電機
+關注
關注
85文章
2053瀏覽量
58043
發布評論請先 登錄
相關推薦
評論