色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

對深度遷移學習的當前研究進行了回顧和分類

人工智能和機器人研究院 ? 來源:未知 ? 作者:李倩 ? 2018-09-17 16:17 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

本文是清華大學智能技術(shù)與系統(tǒng)國家重點實驗室近期發(fā)表的深度遷移學習綜述,首次定義了深度遷移學習的四個分類,包括基于實例、映射、網(wǎng)絡(luò)和對抗的遷移學習方法,并在每個方向上都給出了豐富的參考文獻。機器之心對該綜述進行了全文編譯。

論文:A Survey on Deep Transfer Learning

論文地址:https://arxiv.org/pdf/1808.01974v1.pdf

摘要:作為一種新的分類方法,深度學習最近受到研究人員越來越多的關(guān)注,并已成功應用到諸多領(lǐng)域。在某些類似生物信息和機器人的領(lǐng)域,由于數(shù)據(jù)采集和標注費用高昂,構(gòu)建大規(guī)模的標注良好的數(shù)據(jù)集非常困難,這限制了這些領(lǐng)域的發(fā)展。遷移學習放寬了訓練數(shù)據(jù)必須與測試數(shù)據(jù)獨立同分布(i.i.d.)的假設(shè),這啟發(fā)我們使用遷移學習來解決訓練數(shù)據(jù)不足的問題。本篇綜述的重點是回顧當前利用深度神經(jīng)網(wǎng)絡(luò)進行遷移學習的研究及其應用。我們根據(jù)深度遷移學習中使用的技術(shù),給出了深度遷移學習的定義、類別并回顧了最近的研究工作。

1 引言

深度學習最近受到研究員越來越多的關(guān)注,并已成功應用于眾多實踐中。深度學習算法可以從海量數(shù)據(jù)中學習高級特征,這使得深度學習具備超越傳統(tǒng)機器學習的優(yōu)勢。

深度學習可以通過無監(jiān)督或半監(jiān)督特征學習算法和分層特征提取來自動提取數(shù)據(jù)特征。相比之下,傳統(tǒng)的機器學習方法需要手動設(shè)計特征,這會嚴重增加用戶的負擔??梢哉f深度學習是機器學習中一種基于大規(guī)模數(shù)據(jù)的表征學習算法。

數(shù)據(jù)依賴是深度學習中最嚴峻的問題之一。與傳統(tǒng)的機器學習方法相比,深度學習極其依賴大規(guī)模訓練數(shù)據(jù),因為它需要大量數(shù)據(jù)去理解潛在的數(shù)據(jù)模式。我們可以發(fā)現(xiàn)一個有趣的現(xiàn)象,模型的規(guī)模和所需數(shù)據(jù)量的大小幾乎呈線性關(guān)系。

一個合理的解釋是,對于特定問題,模型的表達空間必須大到足以發(fā)現(xiàn)數(shù)據(jù)的模式。模型中的較底層可以識別訓練數(shù)據(jù)的高級特征,之后的較高層可以識別幫助做出最終決策所需的信息。

在一些特殊領(lǐng)域,訓練數(shù)據(jù)不足不可避免。數(shù)據(jù)收集復雜且昂貴,因此構(gòu)建大規(guī)模、高質(zhì)量的帶標注數(shù)據(jù)集非常困難。

例如,生物信息數(shù)據(jù)集中的每個樣本通常都代表一次臨床試驗或一名痛苦的患者。另外,即使我們以昂貴的價格獲得訓練數(shù)據(jù)集,也很容易過時,因此無法有效地應用于新任務中。

遷移學習放寬了訓練數(shù)據(jù)必須與測試數(shù)據(jù)獨立同分布(i.i.d.)這樣的假設(shè),這啟發(fā)我們使用遷移學習來解決訓練數(shù)據(jù)不足的問題。

在遷移學習中,訓練數(shù)據(jù)和測試數(shù)據(jù)不需要是 i.i.d.,目標域中的模型也不需要從頭開始訓練,這可以顯著降低目標域?qū)τ柧殧?shù)據(jù)和訓練時間的需求。

過去,大多數(shù)遷移學習研究都是在傳統(tǒng)的機器學習方法中進行的。由于深度學習在現(xiàn)代機器學習方法中的優(yōu)勢地位,深度遷移學習及其應用的概述尤為重要。這篇綜述論文的貢獻如下:

定義了深度遷移學習,并首次將其分為四類。我們回顧了目前關(guān)于每種深度遷移學習的研究工作,并給出了每個類別的標準化描述和示意圖。

2 深度遷移學習

遷移學習是機器學習中解決訓練數(shù)據(jù)不足問題的重要工具。它試圖通過放寬訓練數(shù)據(jù)和測試數(shù)據(jù)必須為 i.i.d 的假設(shè),將知識從源域遷移到目標域。

這對由于訓練數(shù)據(jù)不足而難以改善性能的許多研究領(lǐng)域產(chǎn)生巨大的積極影響。遷移學習的學習過程如圖 1 所示。

這篇綜述中使用的某些符號需要明確定義。首先,我們分別給出了域和任務的定義:域可以 用 D = {χ, P(X)} 表示,其包含兩部分:特征空間 χ 和邊緣概率分布 P(X) 其中 X = {x1, ..., xn} ∈ χ。

任務可以用 T = {y, f(x)} 表示。它由兩部分組成:標簽空間 y 和目標預測函數(shù) f(x)。f(x) 也可看作條件概率函數(shù) P(y|x)。最后,遷移學習 可以定義如下:

定義 1:(遷移學習)。給定一個基于數(shù)據(jù) Dt 的學習任務 Tt,我們可以從 Ds 中獲取對任務 Ts 有用的知識。遷移學習旨在通過發(fā)現(xiàn)并轉(zhuǎn)換 Ds 和 Ts 中的隱知識來提高任務 Tt 的預測函數(shù) fT(.) 的表現(xiàn),其中 Ds ≠ Dt 且/或 Ts ≠ Tt。此外,大多數(shù)情況下,Ds 的規(guī)模遠大于 Dt 的規(guī)模。

圖 1:遷移學習的學習過程。

綜述 [19] 和 [25] 將遷移學習就源域和目標域之間的關(guān)系分為三個主要類別,這已被廣泛接受。這些綜述是對過去遷移學習工作的總結(jié),它介紹了許多經(jīng)典的遷移學習方法。

此外,人們最近提出了許多更新和更好的方法。近年來,遷移學習研究界主要關(guān)注以下兩個方面:域適應和多源域遷移。

如今,深度學習近年來在許多研究領(lǐng)域取得了主導地位。重要的是要找到如何通過深度神經(jīng)網(wǎng)絡(luò)有效地傳遞知識,深度神經(jīng)網(wǎng)絡(luò)其定義如下:

定義 2:(深度遷移學習)。給定一個由 定義的遷移學習任務。這就是一個深度遷移學習任務,其中 fT(.) 是一個表示深度神經(jīng)網(wǎng)絡(luò)的非線性函數(shù)。

3 類別

深度遷移學習研究如何通過深度神經(jīng)網(wǎng)絡(luò)利用其他領(lǐng)域的知識。由于深度神經(jīng)網(wǎng)絡(luò)在各個領(lǐng)域都很受歡迎,人們已經(jīng)提出了相當多的深度遷移學習方法,對它們進行分類和總結(jié)非常重要。

基于深度遷移學習中使用的技術(shù),本文將深度遷移學習分為四類:基于實例的深度遷移學習,基于映射的深度遷移學習,基于網(wǎng)絡(luò)的深度遷移學習和基于對抗的深度遷移學習,如表 1 所示。

表 1:深度遷移學習的分類。

3.1 基于實例的深度遷移學習

基于實例的深度遷移學習是指使用特定的權(quán)重調(diào)整策略,通過為那些選中的實例分配適當?shù)臋?quán)重,從源域中選擇部分實例作為目標域訓練集的補充。

它基于這個假設(shè):「盡管兩個域之間存在差異,但源域中的部分實例可以分配適當權(quán)重供目標域使用。」基于實例的深度遷移學習的示意圖如圖 2 所示:

圖 2:基于實例的深度遷移學習的示意圖。源域中的與目標域不相似的淺藍色實例被排除在訓練數(shù)據(jù)集之外;源域中與目標域類似的深藍色實例以適當權(quán)重包括在訓練數(shù)據(jù)集中。

[4] 中提出的 TrAdaBoost 使用基于 AdaBoost 的技術(shù)來過濾掉源域中的與目標域不同的實例。在源域中對實例重新加權(quán)以構(gòu)成類似于目標域的分布。最后,通過使用來自源域的重新加權(quán)實例和來自目標域的原始實例來訓練模型。

它可以減少保持 AdaBoost 屬性的不同分布域上的加權(quán)訓練誤差。[27] 提出的 TaskTrAdaBoost 是一種快速算法,可以促進對新目標域的快速再訓練。與 TrAdaBoost 設(shè)計用于分類問題不同,[20] 提出了 ExpBoost.R2 和 TrAdaBoost.R2 來解決回歸問題。

[24] 提出的雙權(quán)重域自適應(BIW)可以將兩個域的特征空間對齊到公共坐標系中,然后為源域的實例分配適當?shù)臋?quán)重。[10] 提出增強的 TrAdaBoost 來處理區(qū)域砂巖顯微圖像分類的問題。

[26] 提出了一個量度遷移學習框架,用于在并行框架中學習實例權(quán)重和兩個不同域的距離,以使跨域的知識遷移更有效。[11] 將集成遷移學習引入可以利用源域?qū)嵗纳疃壬窠?jīng)網(wǎng)絡(luò)。

3.2 基于映射的深度遷移學習

基于映射的深度遷移學習是指將源域和目標域中的實例映射到新的數(shù)據(jù)空間。在這個新的數(shù)據(jù)空間中,來自兩個域的實例都相似且適用于聯(lián)合深度神經(jīng)網(wǎng)絡(luò)。

它基于假設(shè):「盡管兩個原始域之間存在差異,但它們在精心設(shè)計的新數(shù)據(jù)空間中可能更為相似。」基于映射的深度遷移學習的示意圖如圖 3 所示:

圖 3:基于映射的深度遷移學習的示意圖。來自源域和目標域的實例同時以更相似的方式映射到新數(shù)據(jù)空間。將新數(shù)據(jù)空間中的所有實例視為神經(jīng)網(wǎng)絡(luò)的訓練集。

由 [18] 引入的遷移成分分析(TCA)和基于 TCA 的方法 [29] 已被廣泛用于傳統(tǒng)遷移學習的許多應用中。一個自然的想法是將 TCA 方法擴展到深度神經(jīng)網(wǎng)絡(luò)。

[23] 通過引入適應層和額外的域混淆損失來擴展 MMD 用以比較深度神經(jīng)網(wǎng)絡(luò)中的分布,以學習具有語義意義和域不變性的表示。該工作中使用的 MMD 距離定義為:

損失函數(shù)定義為:

[12] 通過用 [8] 中提出的多核變量 MMD(MK-MMD)距離代替 MMD 距離改進了以前的工作。與卷積神經(jīng)網(wǎng)絡(luò)(CNN)中的學習任務相關(guān)的隱藏層被映射到再生核 Hilbert 空間(RKHS),并且通過多核優(yōu)化方法使不同域之間的距離最小化。

[14] 提出聯(lián)合最大均值差異(JMMD)來衡量聯(lián)合分布的關(guān)系。JMMD 用于泛化深度神經(jīng)網(wǎng)絡(luò)(DNN)的遷移學習能力,以適應不同領(lǐng)域的數(shù)據(jù)分布,并改進了以前的工作。由 [2] 提出的 Wasserstein 距離可以用作域的新距離度量,以便找到更好的映射。

3.3 基于網(wǎng)絡(luò)的深度遷移學習

基于網(wǎng)絡(luò)的深度遷移學習是指復用在源域中預先訓練好的部分網(wǎng)絡(luò),包括其網(wǎng)絡(luò)結(jié)構(gòu)和連接參數(shù),將其遷移到目標域中使用的深度神經(jīng)網(wǎng)絡(luò)的一部分。

它基于這個假設(shè):「神經(jīng)網(wǎng)絡(luò)類似于人類大腦的處理機制,它是一個迭代且連續(xù)的抽象過程。網(wǎng)絡(luò)的前面層可被視為特征提取器,提取的特征是通用的。「基于網(wǎng)絡(luò)的深度遷移學習示意圖如圖 4 所示:

圖 4:基于網(wǎng)絡(luò)的深度遷移學習的示意圖。首先,在源域中使用大規(guī)模訓練數(shù)據(jù)集訓練網(wǎng)絡(luò)。然后,基于源域預訓練的部分網(wǎng)絡(luò)被遷移到為目標域設(shè)計的新網(wǎng)絡(luò)的一部分。最后,它就成了在微調(diào)策略中更新的子網(wǎng)絡(luò)。

[9] 將網(wǎng)絡(luò)分為兩部分,前者是與語言無關(guān)的特征變換,最后一層是與語言相關(guān)的分類器。語言獨立的特征變換可以在多種語言之間遷移。[17] 反復使用 CNN 在 ImageNet 數(shù)據(jù)集上訓練的前幾層來提取其他數(shù)據(jù)集圖像的中間圖像表征,CNN 被訓練去學習圖像表征,它可以有效地遷移到其他訓練數(shù)據(jù)量受限的視覺識別任務。

[15] 提出了一種聯(lián)合學習源域中標記數(shù)據(jù)和目標域中未標記數(shù)據(jù)的自適應分類器和可遷移特征的方法,它通過將多個層插入深層網(wǎng)絡(luò),指引目標分類器顯式學習殘差函數(shù)。[30] 在 DNN 中同時學習域自適應和深度哈希特征。

[3] 提出了一種新穎的多尺度卷積稀疏編碼方法。該方法可以以一種聯(lián)合方式自動學習不同尺度的濾波器組,強制規(guī)定學習模式的明確尺度,并提供無監(jiān)督的解決方案,用于學習可遷移的基礎(chǔ)知識并將其微調(diào)到目標任務。

[6] 應用深度遷移學習將知識從現(xiàn)實世界的物體識別任務遷移到 glitch 分類器,用于多重力波信號的探測。它證明了 DNN 可以作為優(yōu)秀的無監(jiān)督聚類方法特征提取器,根據(jù)實例的形態(tài)識別新類,而無需任何標記示例。

另一個非常值得注意的結(jié)果是 [28] 指出了網(wǎng)絡(luò)結(jié)構(gòu)和可遷移性之間的關(guān)系。它證明了某些模塊可能不會影響域內(nèi)準確性,但會影響可遷移性。它指出哪些特征在深層網(wǎng)絡(luò)中可以遷移,哪種類型的網(wǎng)絡(luò)更適合遷移。得出的結(jié)論是,LeNet、AlexNet、VGG、Inception、ResNet 在基于網(wǎng)絡(luò)的深度遷移學習中是很好的選擇。

3.4 基于對抗的深度遷移學習

基于對抗的深度遷移學習是指引入受生成對抗網(wǎng)絡(luò)(GAN)[7] 啟發(fā)的對抗技術(shù),以找到適用于源域和目標域的可遷移表征。它基于這個假設(shè):「為了有效遷移,良好的表征應該為主要學習任務提供辨判別力,并且在源域和目標域之間不可區(qū)分?!够趯沟纳疃冗w移學習的示意圖如圖 5 所示。

圖 5:基于對抗的深度遷移學習的示意圖。在源域大規(guī)模數(shù)據(jù)集的訓練過程中,網(wǎng)絡(luò)的前面層被視為特征提取器。它從兩個域中提取特征并將它們輸入到對抗層。

對抗層試圖區(qū)分特征的來源。如果對抗網(wǎng)絡(luò)的表現(xiàn)很差,則意味著兩種類型的特征之間存在細微差別,可遷移性更好,反之亦然。在以下訓練過程中,將考慮對抗層的性能以迫使遷移網(wǎng)絡(luò)發(fā)現(xiàn)更多具有可遷移性的通用特征。

基于對抗的深度遷移學習由于其良好的效果和較強的實用性,近年來取得了快速發(fā)展。[1] 通過在損失函數(shù)中使用域自適應正則化項,引入對抗技術(shù)來遷移域適應的知識。

[5] 提出了一種對抗訓練方法,通過增加幾個標準層和一個簡單的新梯度翻轉(zhuǎn)層,使其適用于大多數(shù)前饋神經(jīng)模型。[21] 為稀疏標記的目標域數(shù)據(jù)提出了一種方法遷移同時跨域和跨任務的知識。在這項工作中使用了一種特殊的聯(lián)合損失函數(shù)來迫使 CNN 優(yōu)化域之間的距離,其定義為 LD = Lc +λLadver,其中 Lc 是分類損失,Ladver 是域?qū)箵p失。

因為兩個損失彼此直接相反,所以引入迭代優(yōu)化算法,固定一個損失時更新另一個損失。[22] 提出了一種新的 GAN 損失,并將判別模型與新的域自適應方法相結(jié)合。

[13] 提出一個隨機多線性對抗網(wǎng)絡(luò),其利用多個特征層和基于隨機多線性對抗的分類器層來實現(xiàn)深度和判別對抗適應網(wǎng)絡(luò)。[16] 利用域?qū)剐該p失,并使用基于度量學習的方法將嵌入泛化到新任務,以在深度遷移學習中找到更易處理的特征。

4 結(jié)論

在本篇綜述論文中,我們對深度遷移學習的當前研究進行了回顧和分類。并首次將深度遷移學習分為四類:基于實例的深度遷移學習,基于映射的深度遷移學習,基于網(wǎng)絡(luò)的深度遷移學習和基于對抗的深度遷移學習。在大多數(shù)實際應用中,通?;旌鲜褂蒙鲜龆喾N技術(shù)以獲得更好的結(jié)果。

目前大多數(shù)研究都集中在監(jiān)督學習上,如何通過深度神經(jīng)網(wǎng)絡(luò)在無監(jiān)督或半監(jiān)督學習中遷移知識,可能會在未來引發(fā)越來越多的關(guān)注。負遷移和可遷移性衡量標準是傳統(tǒng)遷移學習的重要問題。這兩個問題對深度遷移學習的影響也要求我們進行進一步的研究。

此外,為深層神經(jīng)網(wǎng)絡(luò)中的遷移知識找到更強大的物理支持是一個非常有吸引力的研究領(lǐng)域,但這需要物理學家、神經(jīng)學家和計算機科學家的合作??梢灶A見,隨著深度神經(jīng)網(wǎng)絡(luò)的發(fā)展,深度遷移學習將被廣泛應用于解決許多具有挑戰(zhàn)性的問題。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 機器學習
    +關(guān)注

    關(guān)注

    66

    文章

    8507

    瀏覽量

    134740
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5562

    瀏覽量

    122864
  • 遷移學習
    +關(guān)注

    關(guān)注

    0

    文章

    74

    瀏覽量

    5738

原文標題:綜述論文:四大類深度遷移學習

文章出處:【微信號:gh_ecbcc3b6eabf,微信公眾號:人工智能和機器人研究院】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 0人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關(guān)推薦
    熱點推薦

    異常檢測的深度學習:一項調(diào)查(翻譯)精選資料分享

    摘要異常檢測是一個重要的問題,在不同的研究領(lǐng)域和應用領(lǐng)域都得到了充分的研究。本調(diào)查的目的有兩個方面,首先我們對基于深度學習的異常檢測的研究
    發(fā)表于 07-12 08:05

    基于深度學習的異常檢測的研究方法

    研究方法進行了系統(tǒng)而全面的綜述。此外,我們回顧了這些方法在不同應用領(lǐng)域中的應用,并評估了它們的有效性。我們根據(jù)所采用的基本假設(shè)和方法,將最先進的深度異常檢測
    發(fā)表于 07-12 07:10

    基于深度學習的異常檢測的研究方法

    ABSTRACT1.基于深度學習的異常檢測的研究方法進行結(jié)構(gòu)化和全面的概述2.回顧這些方法在各個領(lǐng)域這個中的應用情況,并評估他們的有效性。3
    發(fā)表于 07-12 06:36

    遷移學習

    基于特征的遷移學習基于分類器適配的遷移學習章節(jié)目標:掌握遷移
    發(fā)表于 04-21 15:15

    什么是深度學習?使用FPGA進行深度學習的好處?

    上述分類之外,還被用于多項任務(下面顯示了四個示例)。在 FPGA 上進行深度學習的好處我們已經(jīng)提到,許多服務和技術(shù)都使用深度
    發(fā)表于 02-17 16:56

    基于局部分類精度的多源在線遷移學習算法

    近年來,遷移學習得到越來越多的關(guān)注,現(xiàn)有的在線遷移學習算法一般從單個源領(lǐng)域遷移知識。然而,當源領(lǐng)域與目標領(lǐng)域相似度較低時,很難
    發(fā)表于 12-25 11:04 ?0次下載

    采用深度學習對自然語言處理進行分類

    深度學習對自然語言處理(NLP)進行分類
    的頭像 發(fā)表于 11-05 06:51 ?3622次閱讀

    NVIDIA遷移學習工具包 :用于特定領(lǐng)域深度學習模型快速訓練的高級SDK

    ,并在 TeslaGPU 上使用 DeepStream SDK 3.0 進行部署。這些模型針對 IVA 特定參考使用場景(如檢測和分類進行了全面地訓練。
    的頭像 發(fā)表于 12-07 14:45 ?3441次閱讀

    使用深度模型遷移進行細粒度圖像分類的方法說明

    針對細粒度圖像分類方法中存在模型復雜度較高、難以利用較深模型等問題,提出深度模型遷移( DMT)分類方法。首先,在粗粒度圖像數(shù)據(jù)集上進行
    發(fā)表于 01-18 17:01 ?5次下載
    使用<b class='flag-5'>深度</b>模型<b class='flag-5'>遷移</b><b class='flag-5'>進行</b>細粒度圖像<b class='flag-5'>分類</b>的方法說明

    深度學習框架PaddlePaddle在百度內(nèi)部的戰(zhàn)略地位進行了定調(diào)

    服務平臺則主要由可定制化訓練深度學習模型的EasyDL以及一站式開發(fā)平臺AI Studio組成。EasyDL目前已經(jīng)支持圖像識別、文本分類、聲音分類
    的頭像 發(fā)表于 04-29 10:58 ?5037次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>框架PaddlePaddle在百度內(nèi)部的戰(zhàn)略地位<b class='flag-5'>進行了</b>定調(diào)

    基于深度學習遷移學習方法,對瘧疾等傳染病檢測問題進行了研究

    在本文中,我們將使用 Python 和 tensorflow ,來構(gòu)建一個強大的、可擴展的、有效的深度學習解決方案。這些工具都是免費并且開源的,這使得我們能夠構(gòu)建一個真正低成本、高效精準的解決方案,而且可以讓每個人都可以輕松使用。讓我們開始吧!
    的頭像 發(fā)表于 05-05 11:21 ?4653次閱讀

    基于遷移深度學習的雷達信號分選識別

    基于遷移深度學習的雷達信號分選識別 ? 來源:《軟件學報》?,作者王功明等 ? 摘要:? 針對當前雷達信號分選識別算法普遍存在的低信噪比下識別能力差、特征參數(shù)提取困難、
    發(fā)表于 03-02 17:35 ?1920次閱讀

    深度學習在全景視覺上的應用及未來展望

    本文首先對全景圖像的成像進行了分析,緊接著對現(xiàn)有的在全景圖像上的卷積方式進行了分類介紹,并對現(xiàn)有的全景圖像數(shù)據(jù)集進行了收集并介紹。作為第一篇全面回顧
    的頭像 發(fā)表于 10-19 15:25 ?2208次閱讀

    視覺深度學習遷移學習訓練框架Torchvision介紹

    Torchvision是基于Pytorch的視覺深度學習遷移學習訓練框架,當前支持的圖像分類、對
    的頭像 發(fā)表于 09-22 09:49 ?1320次閱讀
    視覺<b class='flag-5'>深度</b><b class='flag-5'>學習</b><b class='flag-5'>遷移</b><b class='flag-5'>學習</b>訓練框架Torchvision介紹

    深度學習中的時間序列分類方法

    的發(fā)展,基于深度學習的TSC方法逐漸展現(xiàn)出其強大的自動特征提取和分類能力。本文將從多個角度對深度學習在時間序列
    的頭像 發(fā)表于 07-09 15:54 ?2168次閱讀
    主站蜘蛛池模板: 少妇无码太爽了视频在线播放 | 青青草原影视 | 涩涩爱涩涩电影网站 | 中文字幕 人妻熟女 | 国产亚洲精品 在线视频 香蕉 | 久久视频精品38在线播放 | 亚洲色图p | 大学生宿舍飞机china free | 亚洲免费无码av线观看 | 青青草原社区 | 在线免费观看国产视频 | 亚洲精品无码专区在线播放 | 无码专区无码专区视频网网址 | 公交车轮C关老师 | 国产精品成人A蜜柚在线观看 | 免费人成在线观看视频不卡 | 久久99国产精品无码AV | 美国一级大黄一片免费的网站 | 十大禁止安装的黄台有风险 | 精品国产免费观看久久久 | 欧美 亚洲 有码中文字幕 | 成人毛片免费在线观看 | 摸董事长的裤裆恋老小说 | 亚洲AV 日韩 国产 有码 | 一本大道手机在线看 | 伊人色综合久久天天网 | 99热这里只有精品6 99热这里只有精品 99热这里只有的精品 | 99人精品福利在线观看 | 国产成人精品自线拍 | 久久电影院久久国产 | 无码任你躁久久久久久老妇双奶 | 美女网站免费久久久久久久 | 国产精品悠悠久久人妻精品 | 色婷婷AV国产精品欧美毛片 | 九色终合九色综合88 | 妈妈的朋友5在线观看免费完整版中文 | 亚洲涩福利高清在线 | 国产乱码卡二卡三卡4W | 好大太快了快插穿子宫了 | 亚洲免费无l码中文在线视频 | 99国产视频 |

    電子發(fā)燒友

    中國電子工程師最喜歡的網(wǎng)站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術(shù)信息
    • 參加活動獲取豐厚的禮品