色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

一種基于深度神經網絡的迭代6D姿態匹配的新方法

nlfO_thejiangme ? 來源:未知 ? 作者:李倩 ? 2018-09-28 10:23 ? 次閱讀

基于圖像信息對目標進行三維空間定位具有十分重要的作用。例如,在機器人操作中,抓握和運動規劃等任務就需要對物體的6D姿態(3D位置和3D方向)信息進行準確的估計;在虛擬現實應用中,人與物體之間的友好流暢的虛擬交互需要對目標進行準確的6D姿態估計。

雖然最新的技術已經在使用深度相機進行物體姿態估計,但這種相機在幀速率、視場、分辨率和深度范圍等方面還存在相當大的局限性,一些小的、薄的、透明的或快速移動的物體檢測起來還非常困難。目前,基于RGB的6D目標姿態估計問題仍然具有挑戰,因為圖像中目標的表觀會受到一系列因素的影響,如光照、姿態變化、遮擋等。此外,魯棒的6D姿態估計方法還需要能處理有紋理和無紋理的目標。

傳統方法往往通過將2D圖像中提取的局部特征與待檢測目標3D模型中的特征相匹配來求解6D姿態估計問題,也就是基于2D-3D對應關系求解PnP問題。但是,這種方法對局部特征依賴性太強,不能很好地處理無紋理目標。為了處理無紋理目標,目前的文獻中有兩類方法:一類是,學習估計輸入圖像中的目標關鍵點或像素的3D模型坐標;還有一類是,通過離散化姿態空間將6D姿態估計問題轉化為姿態分類問題,或轉化為姿態回歸問題。

這些方法雖然能夠處理無紋理目標,但是精度不夠高。為了提高精度,往往還需要進一步的姿態優化:給定初始姿態估計,對合成RGB圖像進行渲染來和目標輸入圖像進行匹配,然后再計算出新的更準的姿態估計。現有的姿態優化方法通常使用手工制作的圖像特征或匹配得分函數。

在本文工作中,作者提出了DeepIM——一種基于深度神經網絡的迭代6D姿態匹配的新方法。給定測試圖像中目標的初始6D姿態估計,DeepIM能夠給出相對SE(3)變換符合目標渲染視圖與觀測圖像之間的匹配關系。提高精度后的姿態估計迭代地對目標重新渲染,使得網絡的兩個輸入圖像會變得越來越相似,從而網絡能夠輸出越來越精確的姿勢估計。上圖展示了作者提出網絡用于姿態優化的迭代匹配過程。

這項工作主要有以下貢獻:

首先,將深度網絡引入到基于圖像的迭代姿態優化問題,而無需任何手工制作的圖像特征,其能夠自動學習內部優化機制;

其次,提出了一種旋轉和平移解耦的SE(3)變換表示方法,能夠實現精確的姿態估計,并且能使提出的方法適用于目標不在訓練集時的姿態估計問題。

最后,作者在LINEMOD和Occlusion數據集上進行了大量實驗,以評估DeepIM的準確性和各種性能。

兩個數據集上的實驗結果表明,作者提出的方法都比當前最先進的基于RGB的方法性能提高了很多。此外,初步的實驗表明,DeepIM還能夠在對一些訓練集中未出現的物體的姿態進行準確估計。

下面讓我們看看一些算法流程的細節。如上圖所示,作者為了獲得足夠的信息進行姿態匹配,對觀測圖像進行放大,并在輸入網絡前進行渲染。要注意的是,在每次迭代過程中,都會根據上一次得到的姿態估計來重新渲染,這樣才能夠通過迭代來增加姿態估計的準確度。DeepIM的網絡結構圖如下圖所示,輸入觀測圖像、渲染圖像以及對應的掩膜。使用FlowNetSimple網絡第11個卷積層輸出的特征圖作為輸入,然后連接兩個全連接層FC256,最后旋轉和平移的估計分別用兩個全連接層FC3和FC4作為輸入。

通常目標從初始位置到新位置的旋轉與平移變換關系如上顯示。

一般來說旋轉變換會影響最后的平移變換,即兩者是耦合在一起的。如果將旋轉中心從相機坐標系的原點轉移到目標中心,就能解耦旋轉和平移。但這樣就需要能夠識別每個目標并單獨存儲對應的坐標系,這會使得訓練變得復雜且不能對未知目標進行姿態匹配。

在本文的工作中,作者讓坐標軸平行于當前相機坐標軸,這樣可以算得相對旋轉,后續實驗證明這樣效果更好。剩下的還要解決相對平移估計問題,一般的方法是直接在三維空間中計算原位置與新位置的xyz距離,但是這種方式既不利于網絡訓練,也不利于處理大小不一、表觀相似的目標或未經訓練的新目標。

本文作者采用在二維圖像空間中進行回歸估計平移變換,vx和vy分別是圖像水平方向和垂直方向上像素移動的距離,vz表示目標尺度變化。其中,fx和fy是相機焦距,由于是常數,在實際訓練中作者將其設為1。

這樣一來,旋轉和平移解耦了,這種表示方法不需要目標的任何先驗知識,并且能處理一些特殊情況,比如兩個外觀相似的物體,唯一的區別就是大小不一樣。

關于模型訓練的損失函數,通常直接的方法是將旋轉和平移分開計算,比如用角度距離表示旋轉誤差,L1距離表示平移誤差,但這種分離的方法很容易讓旋轉和平移兩種損失在訓練時失衡。本文作者提出了一種同時計算旋轉和平移的Point Matching Loss函數,來表達姿態真值和估計值之間的損失。其中,xj表示目標模型上的三維點,n是總共用來計算損失函數的點個數,本文中n=3000。

最后總的損失函數由L=αLpose +βLflow+γLmask組成,其中(α,β,γ)分別為(0.1,0.25,0.03)

實驗部分,作者主要使用了LINEMOD和OCCLUSION數據集。如下表顯示,在LINEMOD數據集上作者分別用PoseCNN和Faster R-CNN初始化DeepIM網絡,發現即便兩個網絡性能差異很大,但是經過DeepIM之后仍能得到差不多的結果。

LINEMOD數據集上的方法對比結果如下表顯示,作者提出的方法是最好的。

在目標有遮擋的數據集上的實驗,本文提出的方法效果也相當不錯哦。

除此之外,本文方法在ModelNet數據集上的表現也相當驚艷,要注意的是,這些物體都不曾出現在訓練集中哦。

利用這種方法實現6D位姿估計是十分有效的,希望能為小伙伴們的研究應用帶來啟發和幫助~

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4771

    瀏覽量

    100715
  • 圖像
    +關注

    關注

    2

    文章

    1083

    瀏覽量

    40449
  • 函數
    +關注

    關注

    3

    文章

    4327

    瀏覽量

    62573

原文標題:DeepIM:基于深度網絡的6D位姿迭代新方法

文章出處:【微信號:thejiangmen,微信公眾號:將門創投】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于LabVIEW8.2提取ECG特征點的新方法

    閾值的方法[4]、差分閾值法[5]、模板匹配法[6]、小波變換法[7,8]、神經網絡法[8]等。這些方法各有所長,但還沒有
    發表于 11-30 16:52

    一種標定陀螺儀的新方法

    一種標定陀螺儀的新方法
    發表于 08-17 12:17

    人工神經網絡實現方法有哪些?

    人工神經網絡(Artificial Neural Network,ANN)是一種類似生物神經網絡的信息處理結構,它的提出是為了解決些非線性,非平穩,復雜的實際問題。那有哪些辦法能實現
    發表于 08-01 08:06

    深度神經網絡是什么

    多層感知機 深度神經網絡in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
    發表于 07-12 06:35

    如何構建神經網絡

    原文鏈接:http://tecdat.cn/?p=5725 神經網絡一種基于現有數據創建預測的計算系統。如何構建神經網絡神經網絡包括:輸入層:根據現有數據獲取輸入的層隱藏層:使用反
    發表于 07-12 08:02

    傳感器故障檢測的Powell神經網絡方法

    大型熱力控制系統必須能夠檢測傳感器故障,并采取相應的措施,保證控制過程的順利進行。提出了一種基于Powell 神經網絡的故障檢測新方法,為系統中每個傳感器構造
    發表于 07-07 09:21 ?6次下載

    基于GA優化T_S模糊神經網絡的小電流接地故障選線新方法_王磊

    基于GA優化T_S模糊神經網絡的小電流接地故障選線新方法_王磊
    發表于 12-31 14:45 ?0次下載

    一種基于深度神經網絡的基音檢測算法

    一種基于深度神經網絡的基音檢測算法_曹猛
    發表于 01-07 19:08 ?0次下載

    一種改進的基于卷積神經網絡的行人檢測方法

    為了在行人檢測任務中使卷積神經網絡(CNN)選擇出更優模型并獲得定位更準確的檢測框,提出一種改進的基于卷積神經網絡的行人檢測方法。改進主要涉及兩個方面:如何決定CNN樣本
    發表于 12-01 15:23 ?0次下載
    <b class='flag-5'>一種</b>改進的基于卷積<b class='flag-5'>神經網絡</b>的行人檢測<b class='flag-5'>方法</b>

    DENSER是一種用進化算法自動設計人工神經網絡(ANNs)的新方法

    深度進化網絡結構表示(DENSER)是一種用進化算法自動設計人工神經網絡(ANNs)的新方法。該算法不僅能搜索最佳
    的頭像 發表于 01-10 15:49 ?6714次閱讀
    DENSER是<b class='flag-5'>一種</b>用進化算法自動設計人工<b class='flag-5'>神經網絡</b>(ANNs)的<b class='flag-5'>新方法</b>

    一種改進的深度神經網絡結構搜索方法

    為提升網絡結構的尋優能力,提岀一種改進的深度神經網絡結構搜索方法。針對網絡結構間距難以度量的問題
    發表于 03-16 14:05 ?3次下載
    <b class='flag-5'>一種</b>改進的<b class='flag-5'>深度</b><b class='flag-5'>神經網絡</b>結構搜索<b class='flag-5'>方法</b>

    卷積神經網絡深度神經網絡的優缺點 卷積神經網絡深度神經網絡的區別

    深度神經網絡一種基于神經網絡的機器學習算法,其主要特點是由多層神經元構成,可以根據數據自動調整神經
    發表于 08-21 17:07 ?4093次閱讀

    一種基于MCU的神經網絡模型在線更新方案之數據處理篇

    一種基于MCU的神經網絡模型在線更新方案之數據處理篇
    的頭像 發表于 10-17 18:06 ?551次閱讀
    <b class='flag-5'>一種</b>基于MCU的<b class='flag-5'>神經網絡</b>模型在線更<b class='flag-5'>新方</b>案之數據處理篇

    一種基于MCU的神經網絡模型靈活更新方案之先行篇

    一種基于MCU的神經網絡模型靈活更新方案之先行篇
    的頭像 發表于 10-17 17:48 ?577次閱讀

    淺析深度神經網絡壓縮與加速技術

    深度神經網絡深度學習的一種框架,它是一種具備至少個隱層的
    的頭像 發表于 10-11 09:14 ?734次閱讀
    淺析<b class='flag-5'>深度</b><b class='flag-5'>神經網絡</b>壓縮與加速技術
    主站蜘蛛池模板: 黑吊大战白xxxxxx| 国产一区二区青青精品久久| 99视频精品国产在线视频| 成人亚洲视频| 吉吉影音先锋av资源网| 欧美另类z0z000高清| 亚洲 中文 自拍 无码| 97影院理论午夜伦不卡偷| 国产精品久久一区二区三区蜜桃| 久久99国产综合精品AV蜜桃| 欧美雌雄双性人交xxxx| 亚洲国产综合久久久无码色伦| 中文字幕午夜福利片| 国产精品第一综合首页| 免费伦理片网站| 亚洲男同tv| 第七色男人天堂| 免费色片播放器| 亚洲日本激情| 国产成人亚洲精品无广告| 欧美 亚洲 中文字幕 高清| 亚洲熟少妇在线播放999| 高h肉文合集| 欧美亚洲另类热图| 13小箩利洗澡无码视频APP| 精品国产成a人在线观看| 王小军怎么了最新消息| WWW国产无套内射久久| 两个人的视频日本在线观看完整| 亚洲精品乱码一区二区三区| 国产精品69人妻无码久久| 求个av网站| 99国内精精品久久久久久婷婷 | 名女躁b久久天天躁| 亚洲精品国产AV成人毛片| 国产成人免费观看| 色偷偷男人的天堂a v| 父亲猜女儿在线观看| 肉肉的各种姿势高H细文| 俄罗斯女人Z0Z0极品| 色窝窝777欧美午夜精品影院|