色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
电子发烧友
开通电子发烧友VIP会员 尊享10大特权
海量资料免费下载
精品直播免费看
优质内容免费畅学
课程9折专享价
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

如何使用tensorflow快速搭建起一個深度學習項目

lviY_AI_shequ ? 來源:未知 ? 作者:李倩 ? 2018-10-25 08:57 ? 次閱讀
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

在上一講中,我們學習了如何利用numpy手動搭建卷積神經網絡。但在實際的圖像識別中,使用numpy去手寫 CNN 未免有些吃力不討好。在 DNN 的學習中,我們也是在手動搭建之后利用Tensorflow去重新實現一遍,一來為了能夠對神經網絡的傳播機制能夠理解更加透徹,二來也是為了更加高效使用開源框架快速搭建起深度學習項目。本節就繼續和大家一起學習如何利用Tensorflow搭建一個卷積神經網絡。

我們繼續以 NG 課題組提供的 sign 手勢數據集為例,學習如何通過Tensorflow快速搭建起一個深度學習項目。數據集標簽共有零到五總共 6 類標簽,示例如下:

先對數據進行簡單的預處理并查看訓練集和測試集維度:

X_train = X_train_orig/255.X_test = X_test_orig/255.Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).Tprint ("number of training examples = " + str(X_train.shape[0]))print ("number of test examples = " + str(X_test.shape[0]))print ("X_train shape: " + str(X_train.shape))print ("Y_train shape: " + str(Y_train.shape))print ("X_test shape: " + str(X_test.shape))print ("Y_test shape: " + str(Y_test.shape))

可見我們總共有 1080 張 64643 訓練集圖像,120 張 64643 的測試集圖像,共有 6 類標簽。下面我們開始搭建過程。

創建placeholder

首先需要為訓練集預測變量和目標變量創建占位符變量placeholder,定義創建占位符變量函數:

def create_placeholders(n_H0, n_W0, n_C0, n_y): """ Creates the placeholders for the tensorflow session. Arguments: n_H0 -- scalar, height of an input image n_W0 -- scalar, width of an input image n_C0 -- scalar, number of channels of the input n_y -- scalar, number of classes Returns: X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float" Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float" """ X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X') Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y') return X, Y

參數初始化

然后需要對濾波器權值參數進行初始化:

def initialize_parameters(): """ Initializes weight parameters to build a neural network with tensorflow. Returns: parameters -- a dictionary of tensors containing W1, W2 """ tf.set_random_seed(1) W1 = tf.get_variable("W1", [4,4,3,8], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) W2 = tf.get_variable("W2", [2,2,8,16], initializer = tf.contrib.layers.xavier_initializer(seed = 0)) parameters = {"W1": W1, "W2": W2} return parameters

執行卷積網絡的前向傳播過程

前向傳播過程如下所示:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED

可見我們要搭建的是一個典型的 CNN 過程,經過兩次的卷積-relu激活-最大池化,然后展開接上一個全連接層。利用Tensorflow搭建上述傳播過程如下:

def forward_propagation(X, parameters): """ Implements the forward propagation for the model Arguments: X -- input dataset placeholder, of shape (input size, number of examples) parameters -- python dictionary containing your parameters "W1", "W2" the shapes are given in initialize_parameters Returns: Z3 -- the output of the last LINEAR unit """ # Retrieve the parameters from the dictionary "parameters" W1 = parameters['W1'] W2 = parameters['W2'] # CONV2D: stride of 1, padding 'SAME' Z1 = tf.nn.conv2d(X,W1, strides = [1,1,1,1], padding = 'SAME') # RELU A1 = tf.nn.relu(Z1) # MAXPOOL: window 8x8, sride 8, padding 'SAME' P1 = tf.nn.max_pool(A1, ksize = [1,8,8,1], strides = [1,8,8,1], padding = 'SAME') # CONV2D: filters W2, stride 1, padding 'SAME' Z2 = tf.nn.conv2d(P1,W2, strides = [1,1,1,1], padding = 'SAME') # RELU A2 = tf.nn.relu(Z2) # MAXPOOL: window 4x4, stride 4, padding 'SAME' P2 = tf.nn.max_pool(A2, ksize = [1,4,4,1], strides = [1,4,4,1], padding = 'SAME') # FLATTEN P2 = tf.contrib.layers.flatten(P2) Z3 = tf.contrib.layers.fully_connected(P2, 6, activation_fn = None) return Z3

計算當前損失

在Tensorflow中計算損失函數非常簡單,一行代碼即可:

def compute_cost(Z3, Y): """ Computes the cost Arguments: Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples) Y -- "true" labels vector placeholder, same shape as Z3 Returns: cost - Tensor of the cost function """ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y)) return cost

定義好上述過程之后,就可以封裝整體的訓練過程模型。可能你會問為什么沒有反向傳播,這里需要注意的是Tensorflow幫助我們自動封裝好了反向傳播過程,無需我們再次定義,在實際搭建過程中我們只需將前向傳播的網絡結構定義清楚即可。

封裝模型

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.009, num_epochs = 100, minibatch_size = 64, print_cost = True): """ Implements a three-layer ConvNet in Tensorflow: CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTED Arguments: X_train -- training set, of shape (None, 64, 64, 3) Y_train -- test set, of shape (None, n_y = 6) X_test -- training set, of shape (None, 64, 64, 3) Y_test -- test set, of shape (None, n_y = 6) learning_rate -- learning rate of the optimization num_epochs -- number of epochs of the optimization loop minibatch_size -- size of a minibatch print_cost -- True to print the cost every 100 epochs Returns: train_accuracy -- real number, accuracy on the train set (X_train) test_accuracy -- real number, testing accuracy on the test set (X_test) parameters -- parameters learnt by the model. They can then be used to predict. """ ops.reset_default_graph() tf.set_random_seed(1) seed = 3 (m, n_H0, n_W0, n_C0) = X_train.shape n_y = Y_train.shape[1] costs = [] # Create Placeholders of the correct shape X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y) # Initialize parameters parameters = initialize_parameters() # Forward propagation Z3 = forward_propagation(X, parameters) # Cost function cost = compute_cost(Z3, Y) # Backpropagation optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost) # Initialize all the variables globally init = tf.global_variables_initializer() # Start the session to compute the tensorflow graph with tf.Session() as sess: # Run the initialization sess.run(init) # Do the training loop for epoch in range(num_epochs): minibatch_cost = 0. num_minibatches = int(m / minibatch_size) seed = seed + 1 minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed) for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch _ , temp_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y}) minibatch_cost += temp_cost / num_minibatches # Print the cost every epoch if print_cost == True and epoch % 5 == 0: print ("Cost after epoch %i: %f" % (epoch, minibatch_cost)) if print_cost == True and epoch % 1 == 0: costs.append(minibatch_cost) # plot the cost plt.plot(np.squeeze(costs)) plt.ylabel('cost') plt.xlabel('iterations (per tens)') plt.title("Learning rate =" + str(learning_rate)) plt.show() # Calculate the correct predictions predict_op = tf.argmax(Z3, 1) correct_prediction = tf.equal(predict_op, tf.argmax(Y, 1)) # Calculate accuracy on the test set accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print(accuracy) train_accuracy = accuracy.eval({X: X_train, Y: Y_train}) test_accuracy = accuracy.eval({X: X_test, Y: Y_test}) print("Train Accuracy:", train_accuracy) print("Test Accuracy:", test_accuracy) return train_accuracy, test_accuracy, parameters

對訓練集執行模型訓練:

_, _, parameters = model(X_train, Y_train, X_test, Y_test)

訓練迭代過程如下:

我們在訓練集上取得了 0.67 的準確率,在測試集上的預測準確率為 0.58 ,雖然效果并不顯著,模型也有待深度調優,但我們已經學會了如何用Tensorflow快速搭建起一個深度學習系統了。

注:本深度學習筆記系作者學習 Andrew NG 的 deeplearningai 五門課程所記筆記,其中代碼為每門課的課后assignments作業整理而成。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4814

    瀏覽量

    103826
  • 深度學習
    +關注

    關注

    73

    文章

    5562

    瀏覽量

    122856
  • tensorflow
    +關注

    關注

    13

    文章

    330

    瀏覽量

    61209

原文標題:深度學習筆記12:卷積神經網絡的Tensorflow實現

文章出處:【微信號:AI_shequ,微信公眾號:人工智能愛好者社區】歡迎添加關注!文章轉載請注明出處。

收藏 0人收藏
加入交流群
微信小助手二維碼

掃碼添加小助手

加入工程師交流群

    評論

    相關推薦
    熱點推薦

    HarmonyOS實戰:組件化項目搭建

    ?本文將詳細講解HarmonyOs組件化項目搭建的全過程,帶領大家實現組件化項目。 項目創建
    的頭像 發表于 06-09 14:58 ?241次閱讀
    HarmonyOS實戰:組件化<b class='flag-5'>項目</b><b class='flag-5'>搭建</b>

    SOLIDWORKS 2025教育版:緊密的產學研合作,搭建理論與實踐的橋梁

    在工程技術教育領域,理論與實踐的結合直是培養高素質人才的關鍵。SOLIDWORKS 2025教育版作為款CAD軟件,通過緊密的產學研合作,成功搭建起了理論與實踐之間的橋梁,為學生、教師和行業專家提供了
    的頭像 發表于 03-26 17:21 ?362次閱讀
    SOLIDWORKS 2025教育版:緊密的產學研合作,<b class='flag-5'>搭建</b>理論與實踐的橋梁

    用樹莓派搞深度學習?TensorFlow啟動!

    介紹本頁面將指導您在搭載64位Bullseye操作系統的RaspberryPi4上安裝TensorFlowTensorFlow專為深度
    的頭像 發表于 03-25 09:33 ?464次閱讀
    用樹莓派搞<b class='flag-5'>深度</b><b class='flag-5'>學習</b>?<b class='flag-5'>TensorFlow</b>啟動!

    軍事應用中深度學習的挑戰與機遇

    ,并廣泛介紹了深度學習在兩主要軍事應用領域的應用:情報行動和自主平臺。最后,討論了相關的威脅、機遇、技術和實際困難。主要發現是,人工智能技術并非無所不能,需要謹慎應用,同時考慮到其局限性、網絡安全威脅以及
    的頭像 發表于 02-14 11:15 ?550次閱讀

    BP神經網絡與深度學習的關系

    ),是種多層前饋神經網絡,它通過反向傳播算法進行訓練。BP神經網絡由輸入層、或多個隱藏層和輸出層組成,通過逐層遞減的方式調整網絡權重,目的是最小化網絡的輸出誤差。 二、深度
    的頭像 發表于 02-12 15:15 ?886次閱讀

    搭建基于1298的采集系統,如果要增加抗電刀干擾的能力,請問難度大不大?

    你好,我們在評估關于手術室監護的項目,考慮采用ADS1298/1299的方案,我們目前已搭建起基于1298的采集系統,如果要增加抗電刀干擾的能力,請問難度大不大,還有多少工作要做
    發表于 12-05 06:24

    NPU與機器學習算法的關系

    在人工智能領域,機器學習算法是實現智能系統的核心。隨著數據量的激增和算法復雜度的提升,對計算資源的需求也在不斷增長。NPU作為種專門為深度學習等機器
    的頭像 發表于 11-15 09:19 ?1261次閱讀

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度
    的頭像 發表于 11-14 15:17 ?1963次閱讀

    GPU深度學習應用案例

    能力,可以顯著提高圖像識別模型的訓練速度和準確性。例如,在人臉識別、自動駕駛等領域,GPU被廣泛應用于加速深度學習模型的訓練和推理過程。 二、自然語言處理 自然語言處理(NLP)是深度學習
    的頭像 發表于 10-27 11:13 ?1413次閱讀

    激光雷達技術的基于深度學習的進步

    信息。這使得激光雷達在自動駕駛、無人機、機器人等領域具有廣泛的應用前景。 二、深度學習技術的發展 深度學習是機器學習
    的頭像 發表于 10-27 10:57 ?1093次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的熱門研究方向。以下是些FPGA加速
    的頭像 發表于 10-25 09:22 ?1279次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 、深度學習是AI大模型的基礎 技術支撐 :
    的頭像 發表于 10-23 15:25 ?2937次閱讀

    FPGA做深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術微信交流群14群! 交流問題() Q:FPGA做深度學習能走多遠?現在用FPGA做深度學習加速成為
    發表于 09-27 20:53

    快速部署Tensorflow和TFLITE模型在Jacinto7 Soc

    電子發燒友網站提供《快速部署Tensorflow和TFLITE模型在Jacinto7 Soc.pdf》資料免費下載
    發表于 09-27 11:41 ?0次下載
    <b class='flag-5'>快速</b>部署<b class='flag-5'>Tensorflow</b>和TFLITE模型在Jacinto7 Soc

    pytorch環境搭建詳細步驟

    PyTorch作為廣泛使用的深度學習框架,其環境搭建對于從事機器學習
    的頭像 發表于 08-01 15:38 ?1910次閱讀
    主站蜘蛛池模板: 免费乱理伦片在线观看夜 | 日韩av国产av欧美天堂社区 | 无码一区二区在线欧洲 | 最近高清日本免费 | 手机在线亚洲日韩国产 | 一本色道久久88加勒比—综合 | 双性h浪荡受bl | 日本精品久久无码影院 | 最近免费中文字幕MV在线视频3 | 被肉日常np高h | 天天射天天爱天天干 | 国产睡熟迷奷系列网站 | 亚洲专区中文字幕视频专区 | 一区二区三区四区国产 | 秘密教学26我们在做一次吧免费 | 男污女XO猛烈的动态图 | 日本一二三区视频在线 | 亚洲国产综合人成综合网站00 | 怡春院院日本一区二区久久 | 久久99AV无色码人妻蜜柚 | sao虎影院桃红视频在线观看 | 999人在线精品播放视频 | 无码不卡中文字幕在线观看 | 好大好硬好湿再深一点网站 | 人人射人人插 | 5g在线视讯年龄确认海外禁止进入 | 7777色鬼xxxx欧美色夫 | 中国老太婆xxxxx | 极品少妇高潮啪啪AV无码 | 欧美一区二区三区免费播放 | 日韩亚洲国产中文字幕欧美 | 99精品视频在线免费观看 | 年轻的的小婊孑2中文字幕 你是淫荡的我的女王 | 护士日本xx厕所 | 伦理片在线线手机版韩国免费6 | 色色色五的天 | 国产欧美一区二区三区视频 | 第一次玩老妇真实经历 | 亚洲AV人无码综合在线观看蜜桃 | 小寡妇好紧进去了好大看视频 | 国产精品2020观看久久 |

    電子發燒友

    中國電子工程師最喜歡的網站

    • 2931785位工程師會員交流學習
    • 獲取您個性化的科技前沿技術信息
    • 參加活動獲取豐厚的禮品