色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

MIT利用深度學習解讀X光片的差異

NVIDIA英偉達企業解決方案 ? 來源:未知 ? 作者:胡薇 ? 2018-11-07 08:35 ? 次閱讀

根據分析乳房X光片,不同的放射科醫生所讀取的乳房密度有很大差異,而乳房密度則是表明患者是否有患乳腺癌的風險的評估指標。

研究發現,放射科醫生將乳房X光片中介于6%和85%之間的任何區域分類為“不均勻致密型”或“極度致密型”癌癥高風險區域。

麻省理工的研究人員使用神經網絡減少放射科醫生對乳房X光片解讀的這種差異。

他們的深度學習模型由放射科醫生在麻省總醫院的篩查中心使用。研究人員表示,這是首次在大規模臨床實踐的日常工作流程中部署這樣的模型。

更好地了解風險

在美國,每年會執行大約3300萬次篩查性乳房X光檢查。這些篩查能夠在任何相關癥狀出現之前揭示乳腺癌的存在,但是還包括另一個重要評估:乳房組織密度。

在評估乳房X光片時,放射科醫生根據乳房組織的密度和分布,將掃描結果分為四個部分:脂肪型、散布、不均勻致密型或極度致密型。

后兩類是需要多加注意的。如果乳房X光片評估為其中一種,意味著高密度、支持性的乳房組織所占的比例較高。與脂肪組織不同,乳房X光片上的支持性組織看起來不那么透明,這使乳房的其他部位變得模糊,更難發現異常情況。

它也是獨立的癌癥風險因素,具有高乳房密度的女性患乳房癌的可能性比低乳房密度的女性高四到五倍。

在美國,大約一半年齡在40到74歲之間的女性被評估為乳房致密,這意味著長期看來,由于患乳腺癌的風險較高,她們可能需要接受MRI等其他篩查方法。

深度學習有助于向病患提供非常一致的篩查結果,便于其更好地了解風險。

乳房密度是整體特征,是基于完整的乳房X光片衡量的屬性。這就更易于神經網絡對其進行分析,麻省理工研究生和論文合著者Kyle Swanson說。

該團隊在成千上萬張帶標記的數字乳房X光片(由不同的放射科醫生進行評估)上對其深度學習工具進行了訓練。

結果是,神經網絡的乳房X光檢查評估與多名放射科醫生的共識讀數比任何一位醫生都要接近。在臨床環境中,這可以讓放射科醫生根據此一致評估對掃描結果做出判斷。

將深度學習應用到臨床

自1月開始,麻省總醫院篩查中心的放射科醫生便已經開始在其臨床工作流程中使用深度學習模型。分析乳房X光片時,放射科醫生會看到深度學習模型做出的評估,并決定是否與其保持一致意見。

為評估模型是否成功,研究人員記錄下了在10,000多次神經網絡評估的掃描中,參與解釋的放射科醫生接受其評估結果的次數。

在放射科醫生事先沒有看到模型的判斷直接讀取乳房X光片時,其評估有87%的情況與神經網絡一致。但是如果先看到深度學習評估,乳房X光攝影師有94%的情況與模型一致。

論文結果顯示,深度學習模型能夠以資深放射科醫生的水平讀取掃描,并提高密度評估的一致性。其他不使用深度學習的自動化方法也與放射科醫生不一致,Yala說。

到目前為止,放射科醫生已在約18,000次乳房X光片評估中使用深度學習模型。研究人員使用NVIDIA GPU訓練其卷積神經網絡,該網絡使用PyTorch深度學習框架開發得出。

Yala說道,他們的目標是減少在此主觀判斷中的變動量,確保病患得到正確的風險評估。

他說:“這應該與運氣無關,每個人都應該向您交付相同的評估結果。”

密度評估只是第一步,研究人員還在研究深度學習工具,以便提前5年檢測出哪些患者患癌癥的風險較高。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4771

    瀏覽量

    100720
  • MIT
    MIT
    +關注

    關注

    3

    文章

    253

    瀏覽量

    23389
  • 深度學習
    +關注

    關注

    73

    文章

    5500

    瀏覽量

    121115

原文標題:MIT部署深度學習工具 更準確分析X光片助力乳癌篩查

文章出處:【微信號:NVIDIA-Enterprise,微信公眾號:NVIDIA英偉達企業解決方案】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    深度學習工作負載中GPU與LPU的主要差異

    ,一個新的競爭力量——LPU(Language Processing Unit,語言處理單元)已悄然登場,LPU專注于解決自然語言處理(NLP)任務中的順序性問題,是構建AI應用不可或缺的一環。 本文旨在探討深度學習工作負載中GPU與LPU的主要
    的頭像 發表于 12-09 11:01 ?249次閱讀
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>工作負載中GPU與LPU的主要<b class='flag-5'>差異</b>

    NPU在深度學習中的應用

    隨著人工智能技術的飛速發展,深度學習作為其核心驅動力之一,已經在眾多領域展現出了巨大的潛力和價值。NPU(Neural Processing Unit,神經網絡處理單元)是專門為深度學習
    的頭像 發表于 11-14 15:17 ?519次閱讀

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發表于 10-27 11:13 ?383次閱讀

    FPGA加速深度學習模型的案例

    FPGA(現場可編程門陣列)加速深度學習模型是當前硬件加速領域的一個熱門研究方向。以下是一些FPGA加速深度學習模型的案例: 一、基于FPGA的AlexNet卷積運算加速 項目名稱
    的頭像 發表于 10-25 09:22 ?215次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度
    的頭像 發表于 10-23 15:25 ?663次閱讀

    FPGA做深度學習能走多遠?

    ,共同進步。 歡迎加入FPGA技術微信交流群14群! 交流問題(一) Q:FPGA做深度學習能走多遠?現在用FPGA做深度學習加速成為一個熱門,深鑒科技,商湯,曠視科技等都有基于FPG
    發表于 09-27 20:53

    利用Matlab函數實現深度學習算法

    在Matlab中實現深度學習算法是一個復雜但強大的過程,可以應用于各種領域,如圖像識別、自然語言處理、時間序列預測等。這里,我將概述一個基本的流程,包括環境設置、數據準備、模型設計、訓練過程、以及測試和評估,并提供一個基于Matlab的
    的頭像 發表于 07-14 14:21 ?2169次閱讀

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領域的重要任務之一,廣泛應用于人體活動識別、系統監測、金融預測、醫療診斷等多個領域。隨著深度
    的頭像 發表于 07-09 15:54 ?879次閱讀

    深度解析高速耦與普通耦的性能差異

    高速耦與普通耦在結構上的主要區別在于光電轉換元件。高速耦通常采用光敏二極管作為核心光電轉換元件,并配備先進的放大驅動電路,以實現快速響應和高精度信號傳輸。而普通耦則多使用光敏三
    的頭像 發表于 07-06 09:43 ?569次閱讀
    <b class='flag-5'>深度</b>解析高速<b class='flag-5'>光</b>耦與普通<b class='flag-5'>光</b>耦的性能<b class='flag-5'>差異</b>

    深度學習與nlp的區別在哪

    深度學習和自然語言處理(NLP)是計算機科學領域中兩個非常重要的研究方向。它們之間既有聯系,也有區別。本文將介紹深度學習與NLP的區別。 深度
    的頭像 發表于 07-05 09:47 ?911次閱讀

    深度學習與傳統機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅動力。它們各自以其獨特的方式推動著技術的進步,為眾多領域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發表于 07-01 11:40 ?1334次閱讀

    FCom解讀熱敏晶振與溫補晶振:從結構到原理,從差異到使用條件

    解讀熱敏晶振與溫補晶振:從結構到原理,從差異到使用條件 一、結構組成 二、工作原理 三、相似點 四、區別 五、使用條件
    的頭像 發表于 05-23 12:04 ?1755次閱讀
    FCom<b class='flag-5'>解讀</b>熱敏晶振與溫補晶振:從結構到原理,從<b class='flag-5'>差異</b>到使用條件

    深度解析深度學習下的語義SLAM

    隨著深度學習技術的興起,計算機視覺的許多傳統領域都取得了突破性進展,例如目標的檢測、識別和分類等領域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術,使得
    發表于 04-23 17:18 ?1286次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領域的一項變革性技術,在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發表于 03-09 08:26 ?619次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?

    什么是深度學習?機器學習深度學習的主要差異

    2016年AlphaGo 擊敗韓國圍棋冠軍李世石,在媒體報道中,曾多次提及“深度學習”這個概念。
    的頭像 發表于 01-15 10:31 ?1068次閱讀
    什么是<b class='flag-5'>深度</b><b class='flag-5'>學習</b>?機器<b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的主要<b class='flag-5'>差異</b>
    主站蜘蛛池模板: 狠狠狠狠狠狠干| 国产在线精品视频资源| 97伦理电影在线不卡| 脱jk裙的美女露小内内无遮挡| 美女被爆羞羞天美传媒| 久久亚洲精品专区蓝色区| 九九色精品国偷自产视频| 国产亚洲精品精华液| 观看免费做视频| 大香网伊人久久综合网2020| 久久资源365| 欧美16一17sex性hd| 爽爽影院免费观看| 亚洲专区中文字幕视频专区| 91福利潘春春在线观看| 动听968| 国产精品免费一区二区三区视频| 国产中文视频| 免费看毛片网| 特大巨黑人吊性xxxxgay| 一本大道无码AV天堂欧美| 99re久久热最新地址一| 国产精品久久久久精品A片软件| 极品美女穴| 青青草原免费在线| 亚洲国产cao| 99国产精品| 国产乱色伦影片在线观看 | 中国老太性色xxxxxhd| xxxx88| 经典WC女厕所里TV| 欧洲亚洲精品A片久久99果冻| 亚洲国产精品无码2019| 99久久无码热高清精品| 国产午夜精品理论片| 男人和女人一起愁愁愁很痛| 香蕉动漫库| china中国gay偷拍| 九九热视频免费| 视频在线免费观看| 99pao成人国产永久免费视频|