色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

基于神經網絡的AI應用正在多個細分市場不斷擴大

Dbwd_Imgtec ? 來源:xx ? 2018-12-22 14:35 ? 次閱讀

GPU和NNA(神經網絡加速器)正在迅速成為AI應用的關鍵要素。隨著不同企業開始挖掘神經網絡在各種任務(比如自然語言處理、圖片分類)中的潛力,集成人工智能元素的產品數量正在穩步的增長。與此同時,對于這些任務的處理也正在從傳統的云端架構轉移到設備本身上來,嵌入式芯片中集成了專用的神經網絡加速器,可支持本地化AI處理。例如先進的駕駛輔助系統(ADAS)能夠實時監控前方道路,還有集成語音識別類功能的消費電子產品,比如虛擬助理。基于神經網絡的AI應用正在多個細分市場不斷擴大。

Imagination公司的業務是為芯片設計提供必要的內核組件,我們在嵌入式圖形處理器(GPU)和神經網絡加速器(NNA)技術方面聞名,我們將這些技術授權給世界領先的芯片供應商。他們的產品被廣泛應用在多個產品和服務中,因此Imagination在市場上占有著獨特的位置,我們使得整個生態系統都能夠參與到AI的發展中來。

不可否認,AI在很多應用中都是至關重要的,但是也有很多的挑戰。其中之一就是協調好終端設備和云服務器之間的處理負載,將AI處理操作放在最佳的位置來完成。例如在消費者終端設備上進行本地化AI語音識別;對于“喚醒”指令或其他簡單指令,因為本地設備無法存儲龐大的知識數據庫,要利用這些數據就必須在云服務器中實現很大一部分AI處理操作。目前的情況是很多市場上銷售的產品都帶有AI功能,但實際上它們只是在本地進行簡單的模式匹配和識別,然后依賴云服務器完成進一步的AI處理。

這種情況將會逐漸改變,隨著芯片工藝技術變得更加普遍,嵌入式神經網絡加速器(NNA)將會變得幾乎和CPU一樣無處不在,這為在終端設備中提高人工智能處理能力創造了機會。例如我們希望看到智能安防攝像頭能夠熟練的監控特定事件,不再局限于簡單的錄像,使用終端設備AI功能來處理識別視野內的一些特征,比如道路上的車輛或人群中的面孔。這也會衍生一些其他功能,比如確定車輛的制造商和型號、或者是某些人獲得授權。輸入結果可能不是可識別的視頻內容,可能只是描述這些結果的原始數據。將人工智能嵌入到安防攝像頭中甚至可以減少不靠譜情況的發生從而降低成本,因為攝像頭內的AI功能可以識別正常行為與可疑行為之間的區別。

雖然人工智能的應用數量在不斷增加,但這并不意味著集成神經網特性的單個SoC是所有應用場景的發展方向。如果我們考慮讓人工智能涉及大部分細分市場,由于使用該技術的產品在加工要求上有很大的不同,自然會出現多樣化。分散的市場很難與通用的應用處理器一起結合使用,例如那些集成了NNA器件和GPU的處理器,事實上,“一刀切”的方式并不總是適用的。

雖然一些市場為SoC供應商提供了大量的機會,比如智能手機、汽車ADAS等,但是許多以使用AI為目標的市場需求量并不是很大。值得注意的是,一些產品可能需要人工智能來進行語音處理或圖像識別,但并非兩者都需要:智能照明系統供應商不太可能使用最初為智能手機而設計的SoC,僅僅是為了將人工智能引入到其應用中,這并不符合成本效益。解決這個問題的方法是創建專門的人工智能芯片,與主應用處理器一起作為配套芯片使用,這些器件可以承擔原來由主應用處理器上的NNA核心來處理的AI任務,這具有明顯的優勢:SoC供應商可以提供一系列具有不同性能水平的終端AI器件;此外,OEM廠商還可以根據他們的期望在特定應用中處理AI任務,提供多個選項來適當的擴展或縮減產品解決方案。

那么人工智能市場將走向何方?2019年,我預計人們對人工智能的興趣和需求都將繼續增長,事實上,支撐這一目標的技術不斷變得成熟。相反,幾乎可以肯定的是,人們會意識到人工智能并不是解決所有問題的答案,炒作現象可能會有所減弱,許多公司也會轉移注意力。他們將會利用人工智能的潛力來增強系統的能力,但是人工智能未必是這些系統的運行核心。

更進一步說,真正的人工智能——機器擁有意識,能夠基于認知推理作出決策——這還需要10年或更長的時間。這意味著云互連在未來很多年都將至關重要,它不僅能提供必要的大規模并行計算資源(可能是通過量子機器),還能提供巨大的數據存儲,人工智能依靠這些數據來理解周圍的世界。更高帶寬的通信技術有望在2019年問世,尤其是5G和802.11ax標準,因此相信云AI架構和互連帶寬都將相應擴大。

PowerVR Series2NX架構

對于真正處于前沿的人工智能,我們需要構想出創新的方法來提高晶體管在硅片上的封裝密度,同時使其既具有通過學習獲得知識的能力又具備所需的推理技能,從而設計全新的SoC器件。

Imagination公司希望為芯片供應商提供關鍵的核心技術,從而構建世界領先的人工智能解決方案。PowerVR GPU提供了高性能的GPU計算能力,用于處理AI中的可視化操作,比如圖像識別和排序、手勢識別驅動接口以及實時視頻分析等。PowerVR NNA(神經網絡加速器)是任何前沿人工智能解決方案的核心,為高級推理和邊緣數據處理提供必要的硬件加速。我們的GPU和NNA能夠為高性能的AI處理提供一切必要的技術并使硅芯片獲得優勢。

人工智能的未來正在變得清晰…但是當它完成某些任務花費的時間比我們預期的時間要長時大家不要感到驚訝。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4772

    瀏覽量

    100855
  • AI
    AI
    +關注

    關注

    87

    文章

    31000

    瀏覽量

    269333

原文標題:嵌入式芯片要如何應對真正的AI本地化處理的挑戰?

文章出處:【微信號:Imgtec,微信公眾號:Imagination Tech】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    RNN模型與傳統神經網絡的區別

    神經網絡是機器學習領域中的一種強大工具,它們能夠模擬人腦處理信息的方式。隨著技術的發展,神經網絡的類型也在不斷增加,其中循環神經網絡(RNN)和傳統
    的頭像 發表于 11-15 09:42 ?357次閱讀

    怎么對神經網絡重新訓練

    重新訓練神經網絡是一個復雜的過程,涉及到多個步驟和考慮因素。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于圖像識別、自然語言處理、語音識別等領域。然而,隨著時間的推移,數據分布可能會
    的頭像 發表于 07-11 10:25 ?473次閱讀

    BP神經網絡和人工神經網絡的區別

    BP神經網絡和人工神經網絡(Artificial Neural Networks,簡稱ANNs)之間的關系與區別,是神經網絡領域中一個基礎且重要的話題。本文將從定義、結構、算法、應用及未來發展等
    的頭像 發表于 07-10 15:20 ?1135次閱讀

    rnn是遞歸神經網絡還是循環神經網絡

    RNN(Recurrent Neural Network)是循環神經網絡,而非遞歸神經網絡。循環神經網絡是一種具有時間序列特性的神經網絡,能夠處理序列數據,具有記憶功能。以下是關于循環
    的頭像 發表于 07-05 09:52 ?587次閱讀

    人工神經網絡模型的分類有哪些

    詳細介紹人工神經網絡的分類,包括前饋神經網絡、卷積神經網絡、循環神經網絡、深度神經網絡、生成對抗網絡
    的頭像 發表于 07-05 09:13 ?1257次閱讀

    遞歸神經網絡是循環神經網絡

    遞歸神經網絡(Recurrent Neural Network,簡稱RNN)和循環神經網絡(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發表于 07-04 14:54 ?798次閱讀

    循環神經網絡和卷積神經網絡的區別

    結構。它們在處理不同類型的數據和解決不同問題時具有各自的優勢和特點。本文將從多個方面比較循環神經網絡和卷積神經網絡的區別。 基本概念 循環神經網絡是一種具有循環連接的
    的頭像 發表于 07-04 14:24 ?1338次閱讀

    深度神經網絡與基本神經網絡的區別

    在探討深度神經網絡(Deep Neural Networks, DNNs)與基本神經網絡(通常指傳統神經網絡或前向神經網絡)的區別時,我們需要從多個
    的頭像 發表于 07-04 13:20 ?920次閱讀

    反向傳播神經網絡和bp神經網絡的區別

    反向傳播神經網絡(Backpropagation Neural Network,簡稱BP神經網絡)是一種多層前饋神經網絡,它通過反向傳播算法來調整網絡中的權重和偏置,以達到最小化誤差的
    的頭像 發表于 07-03 11:00 ?826次閱讀

    神經網絡擬合的誤差怎么分析

    神經網絡擬合誤差分析是一個復雜且深入的話題,涉及到多個方面,需要從數據質量、模型結構、訓練過程和正則化方法等多個角度進行綜合考慮。 引言 神經網絡是一種強大的機器學習模型,廣泛應用于各
    的頭像 發表于 07-03 10:36 ?598次閱讀

    bp神經網絡和卷積神經網絡區別是什么

    BP神經網絡(Backpropagation Neural Network)和卷積神經網絡(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經網絡,它們在
    的頭像 發表于 07-03 10:12 ?1225次閱讀

    卷積神經網絡的原理與實現

    核心思想是通過卷積操作提取輸入數據的特征。與傳統的神經網絡不同,卷積神經網絡具有參數共享和局部連接的特點,這使得其在處理圖像等高維數據時具有更高的效率和更好的性能。 卷積層 卷積層是卷積神經網絡中最基本的層,其主要作用是提取輸入
    的頭像 發表于 07-02 16:47 ?607次閱讀

    卷積神經網絡和bp神經網絡的區別

    不同的神經網絡模型,它們在結構、原理、應用等方面都存在一定的差異。本文將從多個方面對這兩種神經網絡進行詳細的比較和分析。 引言 神經網絡是一種模擬人腦
    的頭像 發表于 07-02 14:24 ?4246次閱讀

    深度神經網絡模型有哪些

    深度神經網絡(Deep Neural Networks,DNNs)是一類具有多個隱藏層的神經網絡,它們在許多領域取得了顯著的成功,如計算機視覺、自然語言處理、語音識別等。以下是一些常見的深度
    的頭像 發表于 07-02 10:00 ?1493次閱讀

    神經網絡架構有哪些

    神經網絡架構是機器學習領域中的核心組成部分,它們模仿了生物神經網絡的運作方式,通過復雜的網絡結構實現信息的處理、存儲和傳遞。隨著深度學習技術的不斷發展,各種
    的頭像 發表于 07-01 14:16 ?724次閱讀
    主站蜘蛛池模板: 迅雷成人论坛| 高清视频在线观看SEYEYE| 欧美性情video sexo视频| 午夜福利合集1000在线| 被高跟鞋调教丨vk| 牛牛免费视频| 99热久久久无码国产精品性麻豆| 久久综合香蕉久久久久久久| 一级淫片bbbxxx| 久久精品视频3| 一本道综合久久免费| 精品亚洲一区二区三区在线播放| 午夜国产视频| 国产精品久久久久久人妻精品流| 色小说在线| 国产精品久久久久久久久久免费| 四虎免费影院| 国产毛片AV久久久久精品| 小学生偷拍妈妈视频遭性教育 | 成人毛片手机版免费看| 免费果冻传媒2021在线观看| 97精品国产高清在线看入口| 成人在免费观看视频国产| 秋霞电影在线观看午夜伦| 亚洲一区二区三区91| 韩国女人高潮嗷嗷叫视频| 亚洲一区日韩一区欧美一区a| 久久国产乱子伦免费精品| 最近中文字幕免费高清MV视频6| 美女打开双腿扒开屁股男生| AAA级精品无码久久久国片| 精品无码久久久久久久久| 一区二区乱子伦在线播放| 乱亲女H秽乱长久久久| FREECHINESE东北群交| 少妇两个奶头喷出奶水了怎么办| 国产午夜免费不卡精品理论片| 亚洲中文字幕一二三四区苍井空| 美女脱三角裤| 中文字幕不卡在线高清| 欧美6O老妪与小伙交|