色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

MIT和微軟的新成果助力自動駕駛擺脫成長的煩惱!

ml8z_IV_Technol ? 來源: 聶磊 ? 作者:電子發(fā)燒友 ? 2019-02-28 11:41 ? 次閱讀

自動駕駛的發(fā)展,既不像大眾期待的那種“一步跨進自動化”,也不像唱衰者眼中那么凄風苦雨,要等數(shù)十年才能信任AI駕駛。在振蕩中前進,才是AI進入生活最真實的樣子。

市場運力嗷嗷待哺,科技公司和汽車廠商們前赴后繼揮金如土,無人車路測也早已不是什么新鮮事,但自動駕駛的到來卻沒有想象中那么一蹴而就。至少這兩年,它的煩心事還挺多。

在美國無人車政策最友好的亞利桑那州,兩年間就發(fā)生了至少21起民眾騷擾自動駕駛車輛和安全員的事件,甚至還有人持槍嚇唬安全員,要求無人車滾出街區(qū)。

之所以犯了眾怒,根本原因還是技術(shù)性失敗太多了。數(shù)據(jù)顯示,2014-2018年,加州自動駕駛事故的發(fā)生率連年增長,谷歌Waymo、通用Cruise、蘋果、TRI(豐田研究所)、Drive.ai、UATC(Uber)等巨頭一個都沒能幸免。

縱然謹小慎微,依舊動輒得咎,無人車表示心里很苦。

經(jīng)過數(shù)年的發(fā)展,自動駕駛的感知技術(shù)已經(jīng)取得了長足的發(fā)展,高精度傳感器和攝像頭早就是標配。技術(shù)困境中的自動駕駛,恐怕需要一個更天秀的決策系統(tǒng),來挽救自己日漸失去的人心。

而最近,這個救世英雄好像真的出現(xiàn)了。

防無人車甚于防川?

自動駕駛的老問題與新解法

從加州機車輛管理局(DMV)剛剛披露的《2018年自動駕駛接管報告》中,我們可以得出一個基本結(jié)論:

自動駕駛初級階段的基本矛盾,是人民日益增長的自動化期待值同落后的無人車駕駛技術(shù)之間的矛盾。

事實證明,盡管原本對無人車認路造成限制的空間感知能力已經(jīng)大大增強,也沒能幫助它們很好地適應現(xiàn)實世界。這也就不能怪大眾對無人車上路沒啥好臉色了。

像是惡名昭著的“Uber 無人車事件”,就是在探測到行人的前提下,系統(tǒng)卻認為當前的位置不足以阻擋正常的駕駛行為,于是選擇了以61公里的時速繼續(xù)前進,沒能留下足夠的反應時間。

明明已經(jīng)在實驗室里接受過“遇到障礙物主動剎車”的培訓了,但真正上路時,做出準確而符合邏輯的判斷,對自動駕駛汽車來說依然是一件相當有難度的事情。

“心太大”容易釀成事故,太“肉”也有可能成為眾矢之的。鳳凰城里,Waymo在每個有停車標志的地方都會停車至少三秒鐘,讓排在它后面的人類司機十分抓狂,沒少受市民的吐槽。

目前看來,能為自動駕駛汽車挽尊的,只有風控和效率兩手抓的決策系統(tǒng)了。

但遺憾的是,很多現(xiàn)實中人類可以輕松處理的交通狀況,機器就是無法做出準確、高效又足夠謹慎的判斷。因此,自動駕駛在很長一段時間內(nèi),還要依靠人工操作來彌補系統(tǒng)智商與人類期望之間的差距了。人工接管頻率也因此成為了評價自動駕駛技術(shù)最重要的指標。

根據(jù)DMV的報告,技術(shù)最出色的Waymo,平均跑17846.8公里才需要人工接管一次;而被吊銷了路測資格證的Uber,跑0.6公里就要被接管一次,這是想累死自家的安全員呀!

在一份谷歌提交的報告中,14個月的路測中自動駕駛和汽車就有272次汽車主動脫離無人駕駛狀態(tài),還有69次安全員決定接過控制權(quán)。谷歌表示,如果沒有安全員的介入,無人車可能會發(fā)生13次交通碰撞事故。

在這種情況下,加州不得不規(guī)定,未來所有無人自動駕駛汽車公司都要設(shè)立遠程人工控制室,在意外情況時能夠接管汽車駕駛工作。

但如果以為只要有人類接管就能萬事大吉,那可就太天真了。且不論未來全靠人工來解決無人車的意外問題,需要多么龐大的人工成本。就自動駕駛汽車現(xiàn)在這智商,讓它獨自上路,就算能在云端看著也不放心啊。

治本的辦法,還是要讓無人車學會在沒有人類干預的情況下完全自動而安全地控制汽車。這可能嗎?

麻省理工和微軟最新的研究成果,就有可能讓系統(tǒng)在訓練過程中就認識并改正自己的錯誤操作,從而在實際駕駛中能夠處理那些現(xiàn)階段只能由人來判斷的意外狀況。

人類的新角色:

從幫無人車收拾爛攤子

到機器智能訓練師

在最新的研究中,麻省理工和微軟提出了一個全新的自動駕駛訓練方式,來幫助無人車在遇到意外時做出更好的決策,而不是出事了才手把手地給它收拾爛攤子。

前期工作和傳統(tǒng)的訓練方法一樣,研究人員對自動駕駛系統(tǒng)進行全方位的仿真訓練,以便為車輛上路時可能遭遇的每一件事做好準備。

不同的是,當自動駕駛汽車被部署到現(xiàn)實世界中運行時,新的“認知盲點訓練”才剛剛開始。在自動駕駛測試車沿著預定的路線行駛時,人類會時刻密切地監(jiān)視系統(tǒng)的行為,但核心任務(wù)并不是幫它救急,而是讓它觀察,在遭遇意外狀況時,人類會怎么做。

如果汽車的行為是正確的,那人類就什么也不做。如果汽車的行動偏離了人類行為,那么人類就會接管過方向盤。此時,系統(tǒng)就會接收到一個信號,在這種特殊情況下,哪種才是可行的方案,怎樣的操作是不能被接受的。

通過收集系統(tǒng)發(fā)生或即將發(fā)生任何錯誤時人類的反饋數(shù)據(jù),系統(tǒng)就有了一個人類反饋行為清單。研究人員將數(shù)據(jù)結(jié)合起來生成的新模型,就可以更精確地預測出,系統(tǒng)最需要如何采取哪些正確的行動方式。

值得注意的是,在這個訓練過程中,系統(tǒng)可能會接受到很多個相互矛盾的信號。

比如在系統(tǒng)眼中,和一輛大型汽車并行巡航時不減速是完全OK的,但如果對方是一輛救護車的話,不減速就并行就會被判錯誤。

高度相似的情境,人類會做出截然相反的反應。這種決策時的模糊地帶,也是目前自動駕駛系統(tǒng)最容易犯錯的地方,也是需要重新認知的“盲點”。

為了解決這一問題,MIT和微軟的研究人員使用了一種Dawid-Skene的機器學習算法。該算法會為系統(tǒng)的行為分別打上“可接受”和“不可接受”兩種標簽,以此來判斷系統(tǒng)在處理每個情況時,決策策略究竟是“安全”還是出現(xiàn)了“盲點”,再以此優(yōu)化標簽的可信度。

經(jīng)過反復測試,系統(tǒng)會記住遭遇過的模糊情境,并根據(jù)標簽推算出一個“犯錯比”概率。

舉個例子,如果系統(tǒng)在救護車情境中有10次執(zhí)行了9次正確的操作(減速/停車),那么就會將這種特殊狀況下的選擇標記為是安全的。

簡單來說,搭載了“犯錯比”的自動駕駛系統(tǒng),在人類的幫助下建立了一個可供自己反思的“錯題集”,面對往常容易出錯的“認知盲點”和模糊情境時,就可以調(diào)取出可被人類所接受的行為方式,更加謹慎和明智地信息行動。

人類的一小步,自動駕駛的一大步?

從實用性來看,該研究還面臨一些現(xiàn)實問題。

比如說一般情況下,不可接受的行為比可接受的行為少得多,這就意味著,通過概率計算訓練出的系統(tǒng),很可能在實際操作中預測所有情況都是安全的,這無疑是極其危險的。

這種新的訓練方式真正的潛力在于,憑借符合常識的操作,讓自動駕駛有了更光明的前景。

首先,由于人類的高度參與,自動駕駛在真正上路之前,能夠很好地預測在新的情況下可能會采取不正確的行動。過去,這些只能被動地等待安全員或云端人員處理。

正如賓夕法尼亞大學教授Eric Eaton所說的那樣,“這項研究讓機器智能和現(xiàn)實世界之間的不匹配來到了一個轉(zhuǎn)折點,直接從人類對系統(tǒng)行為的反饋中推動機器智能的進步?!?/span>

另一方面,“人工”+“智能”的解決方案,也破除了造成“AI具有超能力”這一錯覺的伊萊扎效應(Eliza effect)。在一些復雜多變的現(xiàn)實世界中,人類處理“盲點”的能力遠比AI更出色。

這有助于將自動駕駛從過度樂觀和過度悲觀的兩種極端情緒拉回到中間狀態(tài)。

于是我們知道,自動駕駛的發(fā)展,既不像大眾期待的那種“一步跨進自動化”,也不像唱衰者眼中那么凄風苦雨,要等數(shù)十年才能信任AI駕駛。

在振蕩中前進,才是AI進入生活最真實的樣子。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 微軟
    +關(guān)注

    關(guān)注

    4

    文章

    6607

    瀏覽量

    104154
  • MIT
    MIT
    +關(guān)注

    關(guān)注

    3

    文章

    253

    瀏覽量

    23413

原文標題:MIT和微軟的新成果,能否幫自動駕駛擺脫成長的煩惱?

文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    一文聊聊自動駕駛測試技術(shù)的挑戰(zhàn)與創(chuàng)新

    隨著自動駕駛技術(shù)的飛速發(fā)展,自動駕駛測試的重要性也日益凸顯。自動駕駛測試不僅需要驗證車輛的感知、決策、控制模塊的獨立性能,還需確保系統(tǒng)在復雜場景中運行的整體可靠性。然而,自動駕駛測試面
    的頭像 發(fā)表于 12-03 15:56 ?211次閱讀
    一文聊聊<b class='flag-5'>自動駕駛</b>測試技術(shù)的挑戰(zhàn)與創(chuàng)新

    自動駕駛汽車安全嗎?

    隨著未來汽車變得更加互聯(lián),汽車逐漸變得更加依賴技術(shù),并且逐漸變得更加自動化——最終實現(xiàn)自動駕駛,了解自動駕駛汽車的安全問題變得非常重要,這樣你才能回答“自動駕駛汽車安全嗎”和“
    的頭像 發(fā)表于 10-29 13:42 ?542次閱讀
    <b class='flag-5'>自動駕駛</b>汽車安全嗎?

    自動駕駛HiL測試方案案例分析--ADS HiL測試系統(tǒng)#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月22日 15:20:19

    自動駕駛技術(shù)的典型應用 自動駕駛技術(shù)涉及到哪些技術(shù)

    自動駕駛技術(shù)的典型應用 自動駕駛技術(shù)是一種依賴計算機、無人駕駛設(shè)備以及各種傳感器,實現(xiàn)汽車自主行駛的技術(shù)。它通過使用人工智能、視覺計算、雷達、監(jiān)控裝置和全球定位系統(tǒng)等技術(shù),使自動駕駛
    的頭像 發(fā)表于 10-18 17:31 ?853次閱讀

    自動駕駛HiL測試方案——攝像頭仿真之視頻注入#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月17日 15:18:41

    自動駕駛HiL測試方案 ——場景仿真3D演示#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月16日 10:55:35

    自動駕駛HiL測試方案介紹#ADAS #自動駕駛 #VTHiL

    自動駕駛
    北匯信息POLELINK
    發(fā)布于 :2024年10月12日 18:02:07

    FPGA在自動駕駛領(lǐng)域有哪些優(yōu)勢?

    FPGA(Field-Programmable Gate Array,現(xiàn)場可編程門陣列)在自動駕駛領(lǐng)域具有顯著的優(yōu)勢,這些優(yōu)勢使得FPGA成為自動駕駛技術(shù)中不可或缺的一部分。以下是FPGA在自動駕駛
    發(fā)表于 07-29 17:11

    FPGA在自動駕駛領(lǐng)域有哪些應用?

    FPGA(Field-Programmable Gate Array,現(xiàn)場可編程門陣列)在自動駕駛領(lǐng)域具有廣泛的應用,其高性能、可配置性、低功耗和低延遲等特點為自動駕駛的實現(xiàn)提供了強有力的支持。以下
    發(fā)表于 07-29 17:09

    自動駕駛識別技術(shù)有哪些

    自動駕駛的識別技術(shù)是自動駕駛系統(tǒng)中的重要組成部分,它使車輛能夠感知并理解周圍環(huán)境,從而做出智能決策。自動駕駛識別技術(shù)主要包括多種傳感器及其融合技術(shù),以及基于這些傳感器數(shù)據(jù)的處理和識別算法。
    的頭像 發(fā)表于 07-23 16:16 ?692次閱讀

    特斯拉在華推進全自動駕駛

    特斯拉自動駕駛技術(shù)入華成為市場焦點。馬斯克提出的“無人駕駛出租車”概念正引領(lǐng)特斯拉在中國市場加速推進自動駕駛技術(shù)的創(chuàng)新。
    的頭像 發(fā)表于 05-11 09:39 ?447次閱讀

    禾賽科技與Momenta簽署戰(zhàn)略合作,助力自動駕駛行業(yè)升級

    隨著自動駕駛技術(shù)逐步走向成熟并得到廣泛應用,提升創(chuàng)新、迭代效率成為技術(shù)普及和市場競爭關(guān)鍵環(huán)節(jié)。作為自動駕駛領(lǐng)域的“大腦”和“眼睛”,Momenta和禾賽科技將聯(lián)手推行信息驅(qū)動的智能駕駛技術(shù)快速迭代策略,推動
    的頭像 發(fā)表于 04-22 09:40 ?521次閱讀

    未來已來,多傳感器融合感知是自動駕駛破局的關(guān)鍵

    的Robotaxi運營。這標志著L4級自動駕駛迎來了新的里程碑,朝著商業(yè)化落地邁進了一大步。中國的車企也不甘落后:4月7日,廣汽埃安與滴滴自動駕駛宣布合資公司——廣州安滴科技有限公司獲批工商執(zhí)照。廣汽埃安
    發(fā)表于 04-11 10:26

    自動駕駛發(fā)展問題及解決方案淺析

    隨著科技的飛速進步,自動駕駛汽車已經(jīng)從科幻概念逐漸轉(zhuǎn)變?yōu)楝F(xiàn)實。然而,在其蓬勃發(fā)展的背后,自動駕駛汽車仍面臨一系列亟待解決的問題和挑戰(zhàn)。本文將對這些問題進行深入的剖析,并提出相應的解決方案,以期為未來自動駕駛
    的頭像 發(fā)表于 03-14 08:38 ?1176次閱讀

    華為自動駕駛技術(shù)怎么樣?

    ? ? ? 自動駕駛技術(shù)是當今世界汽車產(chǎn)業(yè)的重要發(fā)展方向。作為全球領(lǐng)先的科技企業(yè),華為在自動駕駛技術(shù)方面也進行了深入的研發(fā)和創(chuàng)新。 一、華為自動駕駛技術(shù)的實力 華為在自動駕駛技術(shù)方面的
    的頭像 發(fā)表于 02-02 16:58 ?1778次閱讀
    主站蜘蛛池模板: 麻豆精品一卡2卡三卡4卡免费观看| MD传媒MD0021在线观看| 久久内在线视频精品mp4| 教室眠催白丝美女校花| 巨胸美乳中文在线观看| 青青草原亚洲| 亚洲 国产 日韩 欧美 在线| 在线播放真实国产乱子伦| 91精品国产91| 国产精品igao视频网网址| 久久国产av偷拍在线| 人人妻免费线| 亚洲视频中文字幕在线观看| acg全彩无遮挡口工漫画网址| 国产线精品视频在线观看| 男女久久久国产一区二区三区 | 办公室日本肉丝OL在线| 国产亚洲免费观看| 欧美日韩精品久久久免费观看| 天天狠狠弄夜夜狠狠躁·太爽了 | JIZZ19学生第一次| 黄色天堂网| 一区二区三区高清视频| 大肚婆孕妇网| 久久久久久久久女黄| 受被三个攻各种道具PLAY| 97超级碰碰人妻中文字幕| 免费观看成人www精品视频在线| 亚洲精品无码成人AAA片| 被黑人做的白浆直流| 国产亚洲精品AAAAAAA片| 亚洲色大成网站www久久九九| 国产精品久久久久精品A片软件| 欧美午夜不卡在线观看| 《乳色吐息》无删减版在线观看 | 亚洲AV香蕉一区区二区三区蜜桃| 成人在线观看国产| 欧美乱妇15p图| 国产成人无码视频一区二区三区| 区久久AAA片69亚洲| 国产高清精品国语特黄A片 |