色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

人工數(shù)學(xué)建模和機器學(xué)習(xí)的優(yōu)缺點進行介紹和比較

電子工程師 ? 來源:lq ? 2019-05-08 09:59 ? 次閱讀

【導(dǎo)語】本文對傳統(tǒng)的人工數(shù)學(xué)建模和機器學(xué)習(xí)的優(yōu)缺點進行了介紹和比較,并介紹了一種將二者優(yōu)點相結(jié)合的方法——解耦表示學(xué)習(xí)。之后,作者利用 DeepMind 發(fā)布的基于解耦表示學(xué)習(xí)的 beta-VAE 模型,對醫(yī)療和金融領(lǐng)域的兩個數(shù)據(jù)集進行了探索,展示了模型效果,并提供了實驗代碼。

這篇文章會對傳統(tǒng)數(shù)學(xué)建模與機器學(xué)習(xí)建模之間的聯(lián)系進行討論。傳統(tǒng)數(shù)學(xué)建模是我們在學(xué)校里都學(xué)過的建模方法,該方法中,數(shù)學(xué)家們基于專家經(jīng)驗和對現(xiàn)實世界的理解進行建模。而機器學(xué)習(xí)建模則是另一種完全不同的建模方式,機器學(xué)習(xí)算法以一種更加隱蔽的方式來描述一些客觀事實,盡管人類并不能夠完全理解模型的描述過程,但在大多數(shù)情況下,機器學(xué)習(xí)模型要比人類專家構(gòu)建的數(shù)學(xué)模型更加精確。當(dāng)然,在更多應(yīng)用領(lǐng)域(如醫(yī)療、金融、軍事等),機器學(xué)習(xí)算法,尤其是深度學(xué)習(xí)模型并不能滿足我們需要清晰且易于理解的決策。

本文會著重討論傳統(tǒng)數(shù)學(xué)建模和機器學(xué)習(xí)建模的優(yōu)缺點,并介紹一個將兩者相結(jié)合的方法 —— 解耦表示學(xué)習(xí) (Disentangled Representation Learning)。

如果想在自己的數(shù)據(jù)集上嘗試使用解耦表示學(xué)習(xí)的方法,可以參考 Github 上關(guān)于解耦學(xué)習(xí)的分享,以及 Google Research 提供的關(guān)于解耦學(xué)習(xí)的項目代碼。

深度學(xué)習(xí)存在的問題

由于深度學(xué)習(xí)技術(shù)的發(fā)展,我們在許多領(lǐng)域都對神經(jīng)網(wǎng)絡(luò)的應(yīng)用進行了嘗試。在一些重要的領(lǐng)域,使用神經(jīng)網(wǎng)絡(luò)確實是合理的,并且獲得了較好的應(yīng)用效果,包括計算機視覺、自然語言處理、語音分析和信號處理等。在上述應(yīng)用中,深度學(xué)習(xí)方法都是利用使用線性和非線性轉(zhuǎn)換對復(fù)雜的數(shù)據(jù)進行自動特征抽取,并將特征表示為“向量”(vector),這一過程一般也稱為“嵌入”(embedding)。之后,神經(jīng)網(wǎng)絡(luò)對這些向量進行運算,并完成相應(yīng)的分類或回歸任務(wù):

從特征提取和準(zhǔn)確度來看,這種 “嵌入”的方法非常有效,但在許多方面也存在不足:

可解釋性:嵌入所使用的N維向量無法對模型分析的原理和過程進行很好的解釋,只有通過逆向工程才能找到輸入數(shù)據(jù)中對分析影響更大的內(nèi)容。

數(shù)據(jù)需求量龐大:如果只有 10~100 個樣本,深度學(xué)習(xí)無法使用。

無監(jiān)督學(xué)習(xí):大多數(shù)深度學(xué)習(xí)模型都需要有標(biāo)簽的訓(xùn)練數(shù)據(jù)。

零樣本學(xué)習(xí):這是一個很關(guān)鍵的問題,基于一個數(shù)據(jù)集所訓(xùn)練出的神經(jīng)網(wǎng)絡(luò),若不經(jīng)過重新訓(xùn)練,很難直接應(yīng)用在另一個數(shù)據(jù)集上。

對象生成:除了 GANs(生成對抗網(wǎng)絡(luò))以外,其他模型都很難生成一個真實的對象。

對象操作:難以通過嵌入調(diào)整輸入對象的具體屬性。

理論基礎(chǔ):雖然我們已經(jīng)掌握了比較通用的逼近理論,但這還不夠。

這些問題很難用機器學(xué)習(xí)框架來解決,但在最近,我們?nèi)〉昧艘恍┬碌倪M展。

數(shù)學(xué)建模的優(yōu)勢

在 20 年、50 年 甚至 100 年以前,大多數(shù)數(shù)學(xué)家都沒有遇到過上述問題。其中原因在于,他們主要關(guān)注數(shù)學(xué)建模(mathematical modeling),并通過數(shù)學(xué)抽象來描述現(xiàn)實世界中的對象和過程,如使用分布、公式和各種各樣的方程式。在這個過程中,數(shù)學(xué)家定義了我們在標(biāo)題中提到的常微分方程(ordinary differential equations, ODE)。我們通過對比深度學(xué)習(xí)存在的問題,對數(shù)學(xué)建模的特點進行了分析。需要注意的是,在下面的分析中,“嵌入”代表數(shù)學(xué)模型的參數(shù),如微分方程的自由度集合。

可解釋性:每個數(shù)學(xué)模型都是基于科學(xué)家對客觀事物的描述而建立的,建模過程包含數(shù)據(jù)家對客觀事物的描述動機和深入理解。例如,對于物理運動的描述, “嵌入” 包括物體質(zhì)量、運動速率和坐標(biāo)空間,不涉及到抽象的向量。

數(shù)據(jù)需求量大:大多數(shù)數(shù)學(xué)建模上的突破并不需要基于巨大的數(shù)據(jù)集進行。

無監(jiān)督學(xué)習(xí):對數(shù)學(xué)建模來說也不適用。

零樣本學(xué)習(xí):一些隨機微分方程(如幾何布朗運動)可以應(yīng)用于金融、生物或物理領(lǐng)域,只需要對參數(shù)進行重新命名。

對象生成:不受限制,對參進行采樣即可。

對象操作:不受限制,對參數(shù)進行操作即可。

理論基礎(chǔ):上百年的科學(xué)基礎(chǔ)。

我們沒有使用微分方程解決所有問題的原因在于,對于大規(guī)模的復(fù)雜數(shù)據(jù)來說,微分方程的表現(xiàn)與深度學(xué)習(xí)模型相比要差得多,這也是深度學(xué)習(xí)得到飛速發(fā)展的原因。但是,我們?nèi)匀恍枰斯さ臄?shù)學(xué)建模。

將機器學(xué)習(xí)與基于人工的建模方法相結(jié)合

如果在處理復(fù)雜數(shù)據(jù)時,我們能把表現(xiàn)較好的神經(jīng)網(wǎng)絡(luò)和人工建模方法結(jié)合起來,可解釋性、生成和操作對象的能力、無監(jiān)督特征學(xué)習(xí)和零樣本學(xué)習(xí)的問題,都可以在一定程度上得到解決。舉個例子,視頻1中呈現(xiàn)的是對于人像的特征提取方法。

對于微分方程和其他人工建模方法來說,圖像處理很難進行,但通過和深度學(xué)習(xí)進行結(jié)合,上述模型允許我們進行對象的生成和操作、可解釋性強,最重要的是,該模型可以在其他數(shù)據(jù)集上完成相同的工作。該模型唯一的問題是,建模過程不是完全無監(jiān)督的。另外,對于對象的操作還有一個重要的改進,即當(dāng)我改變 ”胡須“ 這一特征時,程序自動讓整張臉變得更像男人了,也就是意味著,模型中的特征雖然具有可解釋性,但特征之間是相關(guān)聯(lián)的,換句話說,這些特征是耦合在一起的。

β -VAE

有一個方法可以幫助我們實現(xiàn)解耦表示,也就是讓嵌入中的每個元素對應(yīng)一個單獨的影響因素,并能夠?qū)⒃撉度胗糜诜诸悺⑸珊土銟颖緦W(xué)習(xí)。該算法是由 DeepMind 實驗室基于變分自編碼器開發(fā)的,相比于重構(gòu)損失函數(shù)(restoration loss),該算法更加注重潛在分布與先驗分布之間的相對熵。

若想了解更多細節(jié),可閱讀beta-VAE的論文(https://openreview.net/forum?id=Sy2fzU9gl);也可參考這個視頻2中的介紹,詳細解釋了 beta-VAE 的內(nèi)在思想,以及該算法在監(jiān)督學(xué)習(xí)和強化學(xué)習(xí)中的應(yīng)用。

beta-VAE 可以從輸入數(shù)據(jù)中提取影響變量的因素,提取的因素包括物理運動的方向、對象的大小、顏色和方位等等。在強化學(xué)習(xí)應(yīng)用中,該模型可以區(qū)分目標(biāo)和背景,并能夠基于已有的訓(xùn)練模型在實際環(huán)境中進行零樣本學(xué)習(xí)。

實驗過程

我主要研究醫(yī)療和金融領(lǐng)域的模型應(yīng)用,在這些領(lǐng)域的實際問題中,上述模型能夠在很大程度上解決模型解釋性、人工數(shù)據(jù)生成和零樣本學(xué)習(xí)問題。因此在下面的實驗中,我使用 beta-VAEs 模型對心電圖(ETC)數(shù)據(jù)和和比特幣(BTC)的價格數(shù)據(jù)進行了分析。該實驗的代碼在 Github上可以找到。

首先,我使用veta-VAE(一個非常簡單的多層神經(jīng)網(wǎng)絡(luò))對PTB診斷數(shù)據(jù)中的心電圖數(shù)據(jù)進行了建模,該數(shù)據(jù)包含三類變量:心電圖圖表,每個人隨著時間變化的脈搏數(shù)據(jù),以及診斷結(jié)果(即是否存在梗塞)。在 VAE 訓(xùn)練過程中,epoch 大小設(shè)置為 50,bottleneck size 設(shè)置為 10,學(xué)習(xí)率為 0.0005,capacity 參數(shù)設(shè)置為 25(參數(shù)設(shè)置參考了這個GitHub項目)。模型的輸入是心跳。經(jīng)過訓(xùn)練,該模型學(xué)習(xí)到了數(shù)據(jù)集中影響變量的實際因素。

下圖展示了我使用其中一個單一特征對心跳數(shù)據(jù)進行操作的過程,其中黑線代表心跳,使用的特征數(shù)據(jù)值從 -3 逐漸增大至 3。在這一過程中,其他特征始終保持不變。不難發(fā)現(xiàn),第 5 個特征對心跳形式的影響很大,第 8 個代表了心臟病的情況(藍色心電圖代表有梗塞癥狀,而紅色則相反),第 10 個特征可以輕微地影響脈博。

圖:對心電圖的心跳進行解耦

正如預(yù)期的一樣,金融數(shù)據(jù)的實驗效果沒有這么明顯。模型的訓(xùn)練參數(shù)設(shè)置與上一實驗相似。使用的數(shù)據(jù)為 2017 年收集的比特幣價格數(shù)據(jù)集,該數(shù)據(jù)集包含一個時間長度為 180 分鐘的比特幣價格變化數(shù)據(jù)。預(yù)期的實驗效果為使用 beta-VAE 學(xué)習(xí)一些標(biāo)準(zhǔn)的金融時間序列模型,如均值回歸的時間序列模型,但實際很難對所獲得的表示進行解釋。在實驗結(jié)果中可以發(fā)現(xiàn),第 5 個特征改變了輸入的時間序列的趨勢,第 2、4、6 個特征增加/減少了時間序列上不同階段的波動,或者說使其更加趨于穩(wěn)定或動蕩。

圖:對比特幣的收盤價格進行解耦

多個對象的解耦

假設(shè)在圖像中包含多個對象,我們想要找出每一個對象的影響因素。下面的動圖展示了模型的效果。

總結(jié)

下面針對于機器學(xué)習(xí)存在的問題列表對 beta-VAE 模型進行總結(jié):

可解釋性:特征完全可解釋,我們只需要對每個具體嵌入的元素進行驗證。

數(shù)據(jù)需求量大:由于該模型屬于深度學(xué)習(xí)框架,數(shù)據(jù)需求量依然較大。

無監(jiān)督學(xué)習(xí):可以實現(xiàn)完全的無監(jiān)督學(xué)習(xí)。

零樣本學(xué)習(xí):可以進行,在文中展示的強化學(xué)習(xí)應(yīng)用就屬于這一類。

對象生成:和普通的 VAE 一樣易于對參數(shù)進行采樣。

對象操作:可以輕松操作任何感興趣的變量。

理論基礎(chǔ):有待研究。

上文的模型幾乎具備了數(shù)學(xué)建模的全部優(yōu)質(zhì)特性,也具有深度學(xué)習(xí)在分析復(fù)雜數(shù)據(jù)時的高準(zhǔn)確度。那么,如果能使用完全無監(jiān)督的方式,從復(fù)雜數(shù)據(jù)中學(xué)習(xí)到如此好的表示結(jié)果,是不是意味著傳統(tǒng)數(shù)學(xué)建模的終結(jié)?如果一個機器學(xué)習(xí)模型就可以對復(fù)雜模型進行構(gòu)建,而我們只需要進行特征分析,那還需要基于人工的建模嗎?這個問題還有待討論。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 計算機視覺
    +關(guān)注

    關(guān)注

    8

    文章

    1698

    瀏覽量

    45977
  • 數(shù)據(jù)集
    +關(guān)注

    關(guān)注

    4

    文章

    1208

    瀏覽量

    24689
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5500

    瀏覽量

    121113

原文標(biāo)題:什么是解耦表示學(xué)習(xí)?使用beta-VAE模型探究醫(yī)療和金融問題

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    討論人工布線與自動布線的優(yōu)缺點

    今天剛進行了自動布線的講解.人工布線與自動布線的優(yōu)缺點明顯,在電路板設(shè)計中能否有更簡單的方法處理呢?
    發(fā)表于 09-29 09:33

    常見算法優(yōu)缺點比較

    轉(zhuǎn)帖機器學(xué)習(xí)算法數(shù)不勝數(shù),要想找到一個合適的算法并不是一件簡單的事情。通常在對精度要求較高的情況下,最好的方法便是通過交叉驗證來對各個算法一一嘗試,進行比較后再調(diào)整參數(shù)以確保每個算法都
    發(fā)表于 12-02 15:40

    機器人工具箱中的常用函數(shù)介紹

    這一節(jié),就機器人工具箱中的一些常用的函數(shù)做一下簡單的介紹機器人工具箱在機器建模、軌跡規(guī)劃、控制、可視化仿真等方面給
    發(fā)表于 09-15 09:04

    機器人的優(yōu)缺點有哪些

    機器人的優(yōu)缺點有哪些?機器人是由哪些部分組成的?
    發(fā)表于 10-11 07:51

    各類鉑電阻介紹優(yōu)缺點比較

    電子發(fā)燒友網(wǎng)站提供《各類鉑電阻介紹優(yōu)缺點比較.doc》資料免費下載
    發(fā)表于 04-14 10:29 ?5次下載

    半導(dǎo)體與光學(xué)指紋識別的優(yōu)缺點比較

    半導(dǎo)體與光學(xué)指紋識別的優(yōu)缺點比較半導(dǎo)體與光學(xué)指紋識別的優(yōu)缺點比較
    發(fā)表于 11-10 15:34 ?15次下載

    各類機器學(xué)習(xí)分類算法的優(yōu)點與缺點分析

    機器學(xué)習(xí)中有許多分類算法。本文將介紹分類中使用的各種機器學(xué)習(xí)算法的優(yōu)缺點,還將列出他們的應(yīng)用范圍
    發(fā)表于 03-02 09:50 ?3623次閱讀

    機器學(xué)習(xí)算法總結(jié) 機器學(xué)習(xí)算法是什么 機器學(xué)習(xí)算法優(yōu)缺點

    機器學(xué)習(xí)算法總結(jié) 機器學(xué)習(xí)算法是什么?機器學(xué)習(xí)算法優(yōu)缺點
    的頭像 發(fā)表于 08-17 16:11 ?1897次閱讀

    機器學(xué)習(xí)算法入門 機器學(xué)習(xí)算法介紹 機器學(xué)習(xí)算法對比

    ,討論一些主要的機器學(xué)習(xí)算法,以及比較它們之間的優(yōu)缺點,以便于您選擇適合的算法。 一、機器學(xué)習(xí)
    的頭像 發(fā)表于 08-17 16:27 ?948次閱讀

    深度學(xué)習(xí)機器學(xué)習(xí)的定義和優(yōu)缺點 深度學(xué)習(xí)機器學(xué)習(xí)的區(qū)別

      深度學(xué)習(xí)機器學(xué)習(xí)機器學(xué)習(xí)領(lǐng)域中兩個重要的概念,都是人工智能領(lǐng)域非常熱門的技術(shù)。兩者的關(guān)系
    發(fā)表于 08-21 18:27 ?4437次閱讀

    CML型比較器和StrongArm型比較器的優(yōu)缺點是什么?

    Regeneration型比較器,CML型比較器和StrongArm型比較器的優(yōu)缺點是什么?? 比較器是數(shù)字電路中廣泛使用的關(guān)鍵組件,用于
    的頭像 發(fā)表于 09-17 17:11 ?2799次閱讀

    神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用

    地理解和解決實際問題。本文將詳細介紹神經(jīng)網(wǎng)絡(luò)在數(shù)學(xué)建模中的應(yīng)用,包括神經(jīng)網(wǎng)絡(luò)的基本原理、數(shù)學(xué)建模中神經(jīng)網(wǎng)絡(luò)的應(yīng)用場景、神經(jīng)網(wǎng)絡(luò)的
    的頭像 發(fā)表于 07-02 11:29 ?928次閱讀

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型的優(yōu)缺點有哪些

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型是一種基于人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)建模方法,它通過模擬人腦神經(jīng)元的連接和信息傳遞機制,對復(fù)雜系統(tǒng)
    的頭像 發(fā)表于 07-02 11:36 ?896次閱讀

    機器視覺控制的優(yōu)缺點有哪些

    機器視覺控制是一種利用計算機視覺技術(shù)對機器進行控制的方法,它在工業(yè)自動化、機器人技術(shù)、智能交通等領(lǐng)域得到了廣泛應(yīng)用。然而,機器視覺控制也存在
    的頭像 發(fā)表于 07-04 10:43 ?716次閱讀

    DFT的優(yōu)缺點比較 DFT在機器學(xué)習(xí)中的應(yīng)用

    DFT(離散傅里葉變換)的優(yōu)缺點比較 優(yōu)點 頻域分析 :DFT能夠?qū)⑿盘枏臅r域轉(zhuǎn)換到頻域,這對于分析信號的頻率成分非常有用。 線性和時不變性 :DFT是線性和時不變的,這意味著它滿足疊加原理,對于
    的頭像 發(fā)表于 12-20 09:22 ?226次閱讀
    主站蜘蛛池模板: 手机移动oa| 东北老妇xxxxhd| 久久久久久久网站| 午夜十八岁禁| 国产成人免费片在线视频观看| 欧美亚洲韩日午夜| 97精品伊人久久大香线蕉app| 久久sese| 亚洲中文有码字幕日本| 国产亚洲视频中文字幕| 我的好妈妈8高清在线观看WWW| 成人做视频免费| 日本午夜视频在线| FREE另类老女人| 欧美末成年videos在线| 99精品观看| 欧美精品一卡二卡| 99热只有这里有精品| 欧美v1deossexo高清| aaa在线观看视频高清视频| 男女肉大捧进出全过程免费| 18禁在线无遮挡羞羞漫画| 狂操空姐电影| 4388成人| 欧美激情久久久久久久大片| 9久高清在线不卡免费无吗视频| 欧美日韩高清一区二区三区| PORN白嫩内射合集| 日本高清无吗| 丰满五十老女人性视频| 伸进同桌奶罩里摸她胸作文| 国产高清视频免费最新在线 | 神马电影院午夜神福利在线观看| 超碰在线97久久视频观看| 日韩内射美女人妻一区二区三区| 高hbl双性浪荡古代| 为什么丈夫插我我却喜欢被打着插| 国产露脸150部国语对白| 亚洲精品AV一区午夜福利| 精品无码一区二区三区中文字幕 | TUBE8最新日本护士|