色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

深度學習在機器視覺中的應用與發展

電子工程師 ? 來源:lq ? 2019-05-08 13:55 ? 次閱讀

在短短幾年內,深度學習軟件已經比任何傳統算法可以更好地對圖像進行分類處理,而且可能很快就可以超越人工檢查。

近年來,寵物食品制造商已經使用機器視覺軟件來驗證狗和貓的食品包裝上是否存在獨特的字符、代碼、顏色和圖形。然而,現在這些公司可以通過使用深度學習視覺軟件驗證包裝上是否存在狗或貓圖像來補充這一過程。

與傳統的圖像處理軟件(依賴于特定任務的算法)不同,深度學習軟件使用多層神經自學習算法網絡,根據人類檢查員標記的圖像來識別好圖像和壞圖像。這些數據集通常包含每個缺陷類型至少100個圖像,通過網絡提供,以創建一個模型,對每個輸入圖像中的對象進行分類,并確保高水平的可預測性。

為了驗證寵物食品包裝上的特定動物照片,復雜的神經網絡必須在訓練階段后的幾個層次上模仿人類的判斷。在高層算法專注于更復雜的特征(如面部,四肢,爪子和尾巴)之前,低層算法會檢查圖像是否有簡單的形狀,如邊緣。然后,其他高層算法可以識別所有照片變形、背景、光照條件、視點和障礙物。最后,頂層算法給出了圖像中動物類型的概率,并驗證它是否存在于特定的動物食品包裝上。所有四個步驟都在0.5到1秒內完成。

Cognex公司視覺軟件營銷總監John Petry解釋說:“許多節點組成每個神經網絡層,每個節點做出一個單一的決定,它們一起識別所有類型的圖像模式,并對圖像的好壞做出判斷?!?/p>

用于機器視覺的深度學習軟件已經存在了十多年,但直到最近幾年才變得對用戶友好和可行。在這短短的時間內,幾個行業的制造商已經開始將其應用于各種各樣的領域,如檢測手術器械上的焊接水坑、驗證汽車座椅組件中多個組件的存在,以及識別反光金屬表面上的不同缺陷。

軟件供應商表示,這些例子代表著第二次機器視覺革命的開始。深度學習不僅對機器視覺的各個方面都有積極的影響——比如精度、相機性能和燈光控制——而且這種技術可以完成過去難以完成或需要太多投資的應用。

起源與開放

深度學習的概念對于機器視覺來說相對較新,但對于機器學習來說絕對不是新概念。深度學習是機器學習的一種特殊類型,是人工智能的一種。

丹佛的集成商Artemis Vision總裁Tom Brennan說道:“用于深度學習的當前神經網絡算法非常好,但如果你使用圖靈測試作為晴雨表,它們還沒有達到人工智能的水平,目前深度學習在一些醫療設備和制藥應用得到了應用?!?/p>

Brennan說:“圖靈測試要求機器或技術表現出與人類相當的行為,人工智能級別的算法可以直接響應人類智能的任何問題。

最初的計算機視覺深度學習架構是由Kunihiko Fukushima在20世紀80年代引入的新認知。作為一種人工神經網絡,neocognitron已被用于手寫字符和模式識別任務,并作為通常用于分析視覺圖像的更復雜神經網絡的基礎。

開源深度學習軟件最早出現在20世紀90年代,當時出現了許多關鍵的算法突破。從那時起,計算機科學家已經能夠更好地利用巨大的計算能力和數據,這對神經系統的形成至關重要網絡很好地工作。網上可用的開源軟件包括C/ c++Java庫、框架和工具包。

Cyth Systems首席執行官Andy Long解釋說:“十年前,當深度學習軟件和相關硬件的能力遠遠不夠時,培訓軟件進行深度學習需要大約兩周的時間。到2014年,這花了大約兩天時間,現在不到一天?!?/p>

雄心勃勃的集成商和制造商傾向于從開源軟件開始,因為它不需要許可或特許權使用費。在缺點方面,供應商提供的技術支持很少,在網絡培訓開始之前,最終用戶必須仔細地對幾百到幾千張數據集圖像進行分類。

“Petry指出:“使用開源軟件開始深度學習實踐的公司需要一個真正專家,比如工程學博士。”即使這樣,用戶也很容易花6到12個月的時間來獲得適合應用程序的軟件。還有一個問題是,當需要檢查不同的零件或裝配過程發生變化時,必須重做軟件。

Brennan說,Artemis在兩個深度學習應用程序中使用了開源軟件。在這兩種情況下,Artemis的工程師都需要對軟件進行“大約2%”的修改和微調,以完全適應每個應用程序。

深度學習適用于機器視覺

隨著制造商需要更智能,準確和可重復的視覺系統,深度學習軟件越來越受歡迎。終端用戶最收益的是軟件可以在幾分鐘內自動編程視覺系統。

深度學習最適合涉及可變形對象而非剛性對象的應用。另一個好的應用是驗證在裝配體中存在顏色和紋理變化的許多部件。此外,傳統軟件要求被檢部件具有特定的公差范圍,而深度學習最好由最大且最清晰標記的好的和壞的部分圖像數據集提供。

雖然深度學習通常被認為是化妝品檢驗應用,但Petry說,它也非常擅長確認試劑盒中存在多個物品。例如,確保手術導管是醫療套件的一部分,而不管導管位于何處或其對相機的視角如何。

“從本質上講,深度學習是應用統計學的一項重要工作,”布倫南說。 “[神經網絡中]每個節點的任務是統計地確定與好的或壞的部分最相關的圖像數據。神經算法本身并不聰明,但它學會了以某種方式執行預處理操作,以幫助軟件產生與人們告訴它正確的結果相匹配的結果?!?/p>

供應商表示,對許多公司而言,深度學習已從實驗階段進入體驗階段。這些制造商已經親身體會到,并不是每個應用程序都適合進行深度學習,深度學習也不是能夠解決所有視覺應用程序問題。

最終用戶通常希望對特定的應用程序使用深度學習。然而,供應商知道,為了確定這是最佳選擇,需要進行幾項測試。軟件供應商表示,深度學習軟件比標準軟件靈活得多。布倫南對此表示贊同,尤其是在照明方面。他說,深度學習能更好地通過降低圖像的可變性來控制圖像中的光線。

“他指出:“神經網絡算法可以在明亮或昏暗的光線下分辨出好的和壞的圖像?!薄八麄兡軐W會識別這些光線的差異并不重要,并能準確地對好的和壞的部分進行分類?!?/p>

Teledyne Dalsa亞太區技術總監Yvon Bouchard表示,深度學習主要用于確保整個裝配過程的質量,尤其是零件精加工和最終表面檢測等任務。有時它也被用來幫助“姿態估計”,或估計一個物體的位置和方向。這適用于組裝的部件可能沒有固定或在操作之前需要確定部件的方向。

Teledyne Dalsa的Sherlock 8.0軟件是一種快速應用程序開發工具,它使用傳統的圖像處理功能,并具有深入的學習選項。該公司還為制造商獨特而苛刻的視覺應用開發定制軟件和優化的深度學習模型。

“Sherlock軟件更適合那些想要在一個簡化基本視覺和深度學習過程的環境中進行自己培訓的用戶,”Bouchard解釋道?!瓣P鍵在于,該軟件允許終端用戶訪問所有標準工具,并進行深度學習,以生成特定的解決方案。在許多應用中,傳統的視覺工具執行部分檢查任務,而深度學習處理檢查中難以編碼的部分?!?/p>

Sherlock軟件與帶有單色或彩色格式成像儀的區域和線掃描相機兼容。它直接連接到火線,GigE和USB攝像頭。

Cyth Systems早在2008年就引入了神經視覺(NV)軟件的第一個版本,但由于當時的硬件和技術限制,它沒有像公司所希望的那樣執行。然而到了2014年,第三代NV被開發出來并證明能夠更好地解決復雜的視覺問題。今天,近80%的Cyth客戶在他們的應用程序中使用深度學習。

Long表示,這些客戶包括汽車,食品,航空航天,白色家電和電子產品制造商。后兩者使用深度學習進行裝配驗證,而航空航天公司則依靠它來確保無瑕疵的座椅和發動機。

“幾年前,有機食品種植者開始使用我們在該領域的深度學習軟件來更好地分類其顏色變化過多的水果和蔬菜,”Long說。 “在汽車行業,一位客戶使用深度學習來驗證每個座椅組件是否與正確的車輛一起使用。有些座椅的頭枕上有一個麥克風,麥克風在頭枕的每張訓練照片上都有圓圈,因此軟件知道要查找什么?!?/p>

電子產品客戶使用深度學習來組裝和分類PCB,電阻器晶體管。食品制造商依賴它,因此確保包裝始終具有最佳美觀并包含正確的食品。

在醫學領域,Artemis開發了一種深度學習應用程序,以幫助制造商檢測焊接中的攪拌,該焊接將金屬銷連接到手術工具的末端鉗口。該工具密封容器以防止出血。

焊接在小而粗糙的表面區域上手動完成,并在使用深度學習軟件之前通過標準機器視覺進行驗證。兩次檢查都在一個小型測試工作站中進行。

另一項Artemis項目涉及使用深度學習軟件來檢測玻璃瓶中的微小缺陷。制藥最終用戶需要完美無缺的小瓶,可以容納材料而不會有任何泄漏。 Brennan說Artemis轉向深度學習,因為它更好地定位僅在某些角度下出現在光線下的缺陷。

“深度學習是確保產品質量的好方法,例如在人們通常進行某種檢查的應用中,”Petry解釋道。 “在整個產品生產之后但在包裝之前驗證組件也非常有用。例如,汽車前燈,徽章和輪子,裝滿各種食物或糖果的盒子,以及裝有支架,管子和夾子等物品的手術包。

兩年前,康耐視開始提供ViDi深度學習庫,并于去年與其旗艦視覺軟件產品VisionPro一起推出。該套件有四個基本工具:化妝品檢查,零件定位,分類和光學字符識別(OCR)。

康耐視ViDi可靠地讀取許多具有挑戰性的日期和批次代碼,以及浮雕和蝕刻文本。它還可以自動檢查復雜的圖案織物并識別缺陷。

ViDi Blue-Locate算法定位零件,計算托盤上的半透明玻璃醫用瓶,并對套件和包進行質量控制檢查。 ViDi Red-通過了解目標區域的不同外觀來分析缺陷或其他感興趣區域。

ViDi Green-Classify根據包裝識別產品,或對可接受或不可接受的異常進行分類,例如焊縫質量。最后,ViDi Blue-Read使用OCR解碼嚴重變形,偏斜和蝕刻不良的代碼。其預訓練字體庫可識別大多數文本,無需額外的編程或字體訓練。

Teledyne的一位客戶最近使用深度學習軟件來解決自動裝配過程中涉及小螺釘的問題。由于螺釘未正確配合,公司會定期遇到停機,從而導致螺釘部分堵塞到組件中的交叉螺紋情況。

“雖然一些傳統的軟件可以檢查螺紋特性,但在這種情況下的問題是螺釘尖端已經在主體上經過模具和圓錐形尖頭穿過,”Bouchard說。 “深度學習是一個更好的選擇,因為尖端的過渡區域可以有無數個可能的形狀。視覺系統可以顯示成千上萬個好的和壞的螺絲尖的例子,這樣可以更容易地快速判斷它是好還是壞。“

挑戰與未來

深度學習給最終用戶帶來了挑戰,而傳統視覺軟件無法輕松解決這些挑戰。 Bouchard表示,大多數用戶缺乏對深度學習取得成功所需要的理解。

“到目前為止,主要問題是缺乏高質量,適當分類的圖像,”Bouchard說。 “典型的深度學習應用程序需要數百甚至數千個圖像樣本。在更困難的情況下或自定義應用程序中,訓練模型可能需要多達一百萬或更多的圖像樣本?!?/p>

龍說,制造商對深度學習的期望是理想主義和現實主義的混合體。這就是他為每個客戶提前解釋其限制和基本流程的原因。 Cyth還對每個應用程序進行了視覺研究,以確定它是否真的是深度學習的候選者。

“該公司向我們發送了要拍照的部件,我們會為每個部件生成50到100個好的和壞的圖像,”Long解釋道。 “在我們的測試之后,我們讓他們知道基于假陰性和誤報百分比的深度學習的成功概率。太多的假陰性令人討厭,但過多的誤報會導致產品質量問題。“

與其他軟件不同,Cyth的神經視覺平臺從生產環境中捕獲圖像,并將這些標記的數據集發送到云進行離線處理。然后將圖像發送回PC,并對軟件進行培訓,以便對裝配線上的零件進行深度學習檢查。

Long說這些圖像是通過紅外線,3D,線掃描或智能相機拍攝的。該軟件僅需25毫秒來分析圖像并確定部件是好(綠色檢查)還是壞(紅叉)。

根據Long的說法,任何擁有產品知識的人都可以訓練系統運行,并且始終如一提供可重復的結果。該軟件還允許最終用戶輕松推出新應用程序,引用舊應用程序并訪問所有檢查結果以進行統計分析。

Inspekto的S70自動機器視覺系統使用一系列深度學習引擎作為其Plug and Inspect軟件的一部分。它可以快速(30到60分鐘)并且經濟高效地安裝和設置,無需任何階段的集成商或人工智能專家。緊湊型系統包括先進的視覺傳感器和鏡頭,照明設備和一組可調節臂。

最終用戶不需要設置任何質量保證參數,因為系統自動適應檢查項目。此外,由于該系統與生產線整合,并且足夠堅固,不受任何環境和環境影響,因此無需將特殊結構放置到位。

該系統已經在歐洲各地的工廠中使用,并且每天都要為Mahle等領先的汽車零部件制造商檢查數十萬種產品。 Inspekto的首席技術官Yonatan Hyatt表示,它提供了越來越多的應用程序,包括完整的歸檔和可追溯性,并且足夠準確,無需將產品脫機進行檢查。此外,該系統可用于手動裝配線,以確保操作員正確執行每項任務。

“非自動機器視覺系統的最終用戶沒有直接與視覺質量保證解決方案(集成商)為生產線開發,并且[可能]對當代深度學習軟件的期望有限,”首席執行官Harel Boren說。 Inspekto。 “但是,他們確實希望軟件[提供]集成商承諾的解決方案?;蛘呤褂蒙疃葘W習引擎陣列的自主視覺系統將徹底解決他們的問題?!?/p>

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 神經網絡
    +關注

    關注

    42

    文章

    4771

    瀏覽量

    100714
  • 機器視覺
    +關注

    關注

    161

    文章

    4369

    瀏覽量

    120281
  • 深度學習
    +關注

    關注

    73

    文章

    5500

    瀏覽量

    121111

原文標題:深度學習在機器視覺中的應用與發展

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    基于深度學習技術的智能機器

    圖像分析軟件。其中硬件負責獲取特定條件下的理想圖像,軟件負責獲取圖像的有用信息?;?b class='flag-5'>機器學習的模式識別系統三、深度學習
    發表于 05-31 09:36

    什么是人工智能、機器學習深度學習和自然語言處理?

    。傳統的機器學習僅限于將輸入(數據)和輸出(結果)相關聯,或者輸入數據確定數據模式,而深度學習
    發表于 03-22 11:19

    深度學習機器人行業的應用

    迄今為止,大多數人工智能(AI)研究都集中視覺方面。多虧了機器學習,尤其是深度學習,我們現在有
    的頭像 發表于 12-23 09:05 ?4656次閱讀

    探究深度學習目標視覺檢測的應用與展望

    目標視覺檢測是計算機視覺領域的一個重要問題,視頻監控、自主駕駛、人機交互等方面具有重要的研究意義和應用價值.近年來,深度學習
    的頭像 發表于 01-13 10:59 ?5772次閱讀

    深度學習推動機器視覺識別技術已發展到新階段

    近年來機器人行業出現了許多有關機器視覺的新技術,尤其是物體檢測識別方面,如何讓機器人真正實現
    的頭像 發表于 01-27 10:27 ?3277次閱讀

    深度學習機器學習的區別是什么

    隨著人工智能浪潮席卷現代社會,不少人對于機器學習、深度學習、計算機視覺、自然語言處理等名詞已經耳熟能詳??梢灶A見的是,
    的頭像 發表于 02-02 10:56 ?1.1w次閱讀

    機器學習深度學習有什么區別?

    深度學習算法現在是圖像處理軟件庫的組成部分。在他們的幫助下,可以學習和訓練復雜的功能;但他們的應用也不是萬能的。 “機器學習”和“
    的頭像 發表于 03-12 16:11 ?8192次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>和<b class='flag-5'>深度</b><b class='flag-5'>學習</b>有什么區別?

    機器視覺的圖像增廣技術綜述

    突出。圖像増廣技術是一種有效解決深度學習少量或者低質量訓練數據中進行訓練的一種技術手段,該技術不斷地伴隨著深度學習
    發表于 06-03 14:14 ?8次下載

    基于深度學習視覺檢測系統的特點及應用

    深度學習算法出來之前,對于視覺算法來說,大致可以分為以下5個步驟:特征感知,圖像預處理,特征提取,特征篩選,推理預測與識別。早期的機器
    的頭像 發表于 11-24 14:55 ?1807次閱讀

    計算機視覺的九種深度學習技術

    計算機視覺仍有許多具有挑戰性的問題需要解決。然而,深度學習方法正在針對某些特定問題取得最新成果。 最基本的問題上,最有趣的不僅僅是
    發表于 08-21 09:56 ?596次閱讀
    計算機<b class='flag-5'>視覺</b><b class='flag-5'>中</b>的九種<b class='flag-5'>深度</b><b class='flag-5'>學習</b>技術

    基于機器視覺深度學習的焊接質量檢測系統

    基于機器視覺深度學習的焊接質量檢測系統是一種創新性的技術解決方案,它結合了先進的計算機視覺深度
    的頭像 發表于 01-18 17:50 ?794次閱讀

    深度學習計算機視覺領域的應用

    隨著人工智能技術的飛速發展,深度學習作為其中的核心技術之一,已經計算機視覺領域取得了顯著的成果。計算機
    的頭像 發表于 07-01 11:38 ?777次閱讀

    深度學習視覺檢測的應用

    能力,還使得機器能夠模仿人類的某些智能行為,如識別文字、圖像和聲音等。深度學習的引入,極大地推動了人工智能技術的發展,特別是圖像識別、自然
    的頭像 發表于 07-08 10:27 ?700次閱讀

    深度學習工業機器視覺檢測的應用

    隨著深度學習技術的快速發展,其工業機器視覺檢測
    的頭像 發表于 07-08 10:40 ?1043次閱讀

    AI干貨補給站 | 深度學習機器視覺的融合探索

    智能制造的浪潮,阿丘科技作為業界領先的工業AI視覺平臺及解決方案提供商,始終致力于推動AI+機器視覺技術的革新與應用。為此,我們特別開設
    的頭像 發表于 10-29 08:04 ?221次閱讀
    AI干貨補給站 | <b class='flag-5'>深度</b><b class='flag-5'>學習</b>與<b class='flag-5'>機器</b><b class='flag-5'>視覺</b>的融合探索
    主站蜘蛛池模板: 久热久热精品在线观看| 国产人妻人伦精品1国产| 99视频在线观看视频| 99国产精品久久人妻 | 秋霞电影院兔费理论观频84mb| 欧洲最强rapper潮水喷视频 | 亚洲精品免费在线| 永久adc视频| 99久久久精品免费观看国产| 成都电影免费中文高清| 国产美女视频一区二区二三区| 好吊妞在线成人免费| 乐乐亚洲精品综合影院| 日本九九热在线观看官网| 午夜深情在线观看免费| 曰本真人00XX动太图| chinese情侣自拍啪hd| 国产精品私人玩物在线观看| 久久黄色大片| 日本无码免费久久久精品| 亚洲国产精品日本无码网站| 最近韩国HD免费观看国语| 高清AV熟女一区| 久久re这里精品23| 日本强好片久久久久久AAA | 天天爽夜夜爽夜夜爽| 亚洲午夜精品aaa级久久久久| 99国产精品久久久久久久日本竹| 国产精品国产三级国AV在线观看| 久久99国产精品一区二区| 99国产精品免费视频| 广播电台在线收听| 久久精品视频uu| 三级黃60分钟| 在线亚洲国产日韩欧洲专区| 被爽到叫呻呤视频免费视频| 精品无码久久久久久久久| 青柠在线观看视频在线高清| 亚洲欧美国产旡码专区| 成都电影免费中文高清| 久久永久免费视频|