色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

看圖識數(shù)的神經(jīng)網(wǎng)絡(luò),人工智能距人類又近了一步

電子工程師 ? 來源:YXQ ? 2019-05-23 09:28 ? 次閱讀

還記得從什么時候開始,你學(xué)會了看圖識數(shù),什么時候開始明白1和2的含義么?

也許我們都記不清了,因為這種直觀的數(shù)字感是卻是人類和動物與生俱來的優(yōu)勢。 與計算機不同的是,當我看到2只小豬或者2個小鴨子和數(shù)字符號2在一起時候,我們可能不需要計算就會知道,它們都有一個共同點——“2”這個抽象概念。

即便現(xiàn)在的計算機已經(jīng)可以在一秒內(nèi)完成數(shù)百萬次的計算,機器學(xué)習已經(jīng)可以識別小貓小狗,讓人工智能網(wǎng)絡(luò)像小孩一樣學(xué)習辨別數(shù)字仍是一件新穎的研究。

上周在Science Advances發(fā)表的一篇文章表明, 讓神經(jīng)網(wǎng)絡(luò)重復(fù)嬰兒、猴子和烏鴉等生物的認知技能,在沒有經(jīng)過任何訓(xùn)練的情況下, 它突然學(xué)會了分別更大和更小的數(shù)量差異,也就是我們剛剛說的數(shù)字感。 很多專家認為數(shù)字感是我們計算和運用復(fù)雜數(shù)學(xué)能力的重要前提。 但是關(guān)于這種能力如何在年幼的大腦中自發(fā)產(chǎn)生的,我們還不得而知。

看圖識數(shù)的神經(jīng)網(wǎng)絡(luò)

近年來,受生物學(xué)啟發(fā)的深度神經(jīng)網(wǎng)絡(luò)為視覺系統(tǒng)的運作提出很多有價值的啟發(fā)。生成神經(jīng)網(wǎng)絡(luò),即一類深層網(wǎng)絡(luò)通過學(xué)習感官輸入來構(gòu)建內(nèi)部模型,已被證明具有數(shù)字感,但無法解釋數(shù)字神經(jīng)元的出現(xiàn)。

為了研究它的發(fā)展,來自德國蒂賓根大學(xué)的生物學(xué)研究所Nieder教授試圖建立一個深度學(xué)習網(wǎng)絡(luò),來模擬我們大腦中視覺系統(tǒng)的運作,看看在沒有訓(xùn)練軟件的情況下是否會出現(xiàn)數(shù)量特征。

研究人員首先在120萬個圖像的標準數(shù)據(jù)集上訓(xùn)練網(wǎng)絡(luò),這些圖像分為1,000個不同的類別。最終,像之前的訓(xùn)練系統(tǒng)一樣它可以辨別動物和昆蟲的圖片,不僅可以辨別狗和蜘蛛還可以辨別其特定的品種。

接下來,研究人員向神經(jīng)網(wǎng)絡(luò)展示了只包含黑色背景上的白點圖案,以表示數(shù)字1到30,在沒有任何關(guān)于數(shù)字的指導(dǎo)或被告知尋找數(shù)量上的差異,神經(jīng)網(wǎng)絡(luò)做到了將圖像根據(jù)點數(shù)分類。

“這項研究很酷的地方在于,當你訓(xùn)練視覺系統(tǒng)的神經(jīng)網(wǎng)絡(luò)來完成物體識別等任務(wù)時,它其實還可以自學(xué)一些其他東西,如數(shù)字?!甭槭±砉W(xué)院大腦和認知科學(xué)系教授James DiCarlo說。

Nieder的團隊使用模擬人類大腦的深度學(xué)習系統(tǒng),其中“神經(jīng)元”既接收來自系統(tǒng)中高等神經(jīng)元的輸入,又將該信息發(fā)送到線路上,某些神經(jīng)元基于其特征或模式被刺激而“反射”。

使用這個模型,Nieder將網(wǎng)絡(luò)神經(jīng)元的激活與猴子大腦中的神經(jīng)元進行了比較,這些神經(jīng)元顯示出相同的點圖案。

人工神經(jīng)元的行為與動物大腦的視覺處理區(qū)域中的神經(jīng)元完全相同,具有對特定數(shù)字的偏好和調(diào)整。例如,特地數(shù)字6神經(jīng)元會在出現(xiàn)6個點時候表現(xiàn)出最高的激活水平,數(shù)字5和圖像7的匹配激活水平降低一點,數(shù)字4和7點圖像更低,當刺激物遠離其目標數(shù)量時,神經(jīng)元的活動不斷下降。

神經(jīng)網(wǎng)絡(luò)也會犯和人類大腦相似的錯誤, 它更難以區(qū)分較近的數(shù)字,如4和5,而不是相距較遠的數(shù)字,如4和9。它也很難區(qū)分較大的數(shù)字,如20和25。

人工智能距人類又近了一步

“這對我們來說非常令人興奮,因為這些正是我們在大腦真實神經(jīng)元中的反應(yīng)類型,”Nieder說?!斑@可能可以解釋我們的大腦,至少我們的視覺系統(tǒng),可以自發(fā)地表示場景中的物體數(shù)量?!?/p>

研究數(shù)學(xué)思維的巴黎笛卡爾大學(xué)的研究科學(xué)家VéroniqueIzard在一封電子郵件中寫道,這項研究表明了數(shù)字感不是從進化上選擇的,而是作為識別物體的副產(chǎn)品自發(fā)地出現(xiàn)。

Nieder認為這種類型的神經(jīng)網(wǎng)絡(luò)提供了更好的人腦模型。他說:“我們現(xiàn)在可以對大腦中的事情如何發(fā)生,以及從人工智能網(wǎng)絡(luò)到真實網(wǎng)絡(luò)的來回做出假設(shè)。我認為這些網(wǎng)絡(luò)對基礎(chǔ)科學(xué)來說是一大優(yōu)勢。”

實現(xiàn)表明我們的學(xué)習原則還是非?;A(chǔ)的,人類和動物所展示的一些高層次的思考可能與我們的視覺體驗密切相關(guān)。 我們可以沿著這個方向,將學(xué)習訓(xùn)練應(yīng)用于其他任務(wù),去實現(xiàn)一些更具人類特質(zhì)的人工智能。

隨著我們不斷發(fā)現(xiàn)更多關(guān)于構(gòu)建人工智能學(xué)習的技術(shù),并找到了解生物大腦的新方法,我們將會解開了更多智能、適應(yīng)性行為的奧秘。

雖然還有很長的路要走,很多其他方面去探索,但很清楚的是,人類之所以有這么強大的適應(yīng)能力與我們看審視世界的能力和總結(jié)經(jīng)驗的能力密不可分。毫無疑問,這也將是任何人工智能系統(tǒng)的必要組成部分,這樣才有可能像人類一樣完成多樣性和復(fù)雜性的任務(wù)。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴

原文標題:看圖識數(shù)辨大小,人類獨有的“數(shù)字感”被機器無意中學(xué)習了

文章出處:【微信號:BigDataDigest,微信公眾號:大數(shù)據(jù)文摘】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學(xué)習領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1611次閱讀

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中個基礎(chǔ)且
    的頭像 發(fā)表于 07-10 15:20 ?1164次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的案例分析

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)作為深度學(xué)習領(lǐng)域的重要分支,自20世紀80年代以來直是人工智能領(lǐng)域的研究熱點。其靈感來源于生物
    的頭像 發(fā)表于 07-08 18:20 ?810次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型的分類有哪些

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs)是種模擬人腦神經(jīng)元網(wǎng)絡(luò)的計算模型,它在許多領(lǐng)域,如圖像識別、語音識別、自然語言處理、預(yù)測分析等有著廣泛
    的頭像 發(fā)表于 07-05 09:13 ?1261次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)的特點

    人工智能神經(jīng)網(wǎng)絡(luò)系統(tǒng)是種模擬人腦神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和功能的計算模型,具有高度的自適應(yīng)性、學(xué)習能力和泛化能力。本文將介紹人工智能
    的頭像 發(fā)表于 07-04 09:42 ?505次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)模型有哪些

    人工智能神經(jīng)網(wǎng)絡(luò)模型是類受人腦啟發(fā)的計算模型,它們在許多領(lǐng)域都取得了顯著的成功。以下是些常見的神經(jīng)網(wǎng)絡(luò)模型: 感知機(Perceptro
    的頭像 發(fā)表于 07-04 09:41 ?641次閱讀

    人工智能人工神經(jīng)網(wǎng)絡(luò)有什么區(qū)別

    人工智能門研究如何使計算機模擬人類智能行為的學(xué)科。它起源于20世紀40年代,當時計算機科學(xué)家們開始嘗試開發(fā)能夠模擬人類思維過程的計算機
    的頭像 發(fā)表于 07-04 09:39 ?1307次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)是什么

    人工智能神經(jīng)網(wǎng)絡(luò)種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,其結(jié)構(gòu)和功能非常復(fù)雜。 引言 人工智能神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 09:37 ?605次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)的工作原理是什么

    人工智能神經(jīng)網(wǎng)絡(luò)的工作原理是個復(fù)雜且深入的話題,涉及到多個領(lǐng)域的知識,包括數(shù)學(xué)、計算機科學(xué)、生物學(xué)等。 神經(jīng)網(wǎng)絡(luò)的基本概念 神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 09:35 ?732次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)芯片的介紹

    人工智能神經(jīng)網(wǎng)絡(luò)芯片是類專門為深度學(xué)習和神經(jīng)網(wǎng)絡(luò)算法設(shè)計的處理器。它們具有高性能、低功耗、可擴展等特點,廣泛應(yīng)用于圖像識別、語音識別、自然語言處理等領(lǐng)域。以下是關(guān)于
    的頭像 發(fā)表于 07-04 09:33 ?823次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是什么

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系是密不可分的。神經(jīng)網(wǎng)絡(luò)人工智能種重要實現(xiàn)方式,而人工智能則是
    的頭像 發(fā)表于 07-03 10:25 ?1187次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?4329次閱讀

    人工神經(jīng)網(wǎng)絡(luò)的模型及其應(yīng)用有哪些

    ,人工神經(jīng)網(wǎng)絡(luò)已經(jīng)發(fā)展成為機器學(xué)習和人工智能領(lǐng)域的重要技術(shù)之。本文將詳細介紹人工神經(jīng)網(wǎng)絡(luò)的模型
    的頭像 發(fā)表于 07-02 10:04 ?1093次閱讀

    神經(jīng)網(wǎng)絡(luò)人工智能的關(guān)系

    在快速發(fā)展的科技領(lǐng)域,人工智能(Artificial Intelligence, AI)和神經(jīng)網(wǎng)絡(luò)(Neural Networks)是兩個備受矚目的概念。它們之間的聯(lián)系緊密而復(fù)雜,共同推動了智能
    的頭像 發(fā)表于 07-01 14:23 ?904次閱讀

    詳解深度學(xué)習、神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

    在如今的網(wǎng)絡(luò)時代,錯綜復(fù)雜的大數(shù)據(jù)和網(wǎng)絡(luò)環(huán)境,讓傳統(tǒng)信息處理理論、人工智能與人工神經(jīng)網(wǎng)絡(luò)都面臨巨大的挑戰(zhàn)。近些年,深度學(xué)習逐漸走進人們的視線,通過深度學(xué)習解決若干問題的案例越來越多。
    的頭像 發(fā)表于 01-11 10:51 ?2212次閱讀
    詳解深度學(xué)習、<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>與卷積<b class='flag-5'>神經(jīng)網(wǎng)絡(luò)</b>的應(yīng)用
    主站蜘蛛池模板: 久久高清内射无套| 果冻传媒视频在线播放 免费观看| 亚洲黄色在线观看| 日日夜夜撸 在线影院| 欧美片内射欧美美美妇| 麻豆免费高清完整版| 老女人与小伙子露脸对白| 精品久久久爽爽久久久AV| 国色天香视频在线社区| 国产精品伦理一二三区伦理 | 国产成人一区免费观看| 被同桌摸出水来了好爽的视频| brazzers情欲狂欢| 99视频这里只有精品| 99国产精品久久人妻无码| 999久久免费高清热精品| 99久久久无码国产精品免费人妻 | 第七色 夜夜撸| 俄罗斯兽交XXXXX在线| 国产对白精品刺激一区二区| 国产成人无码区免费内射一片色欲| 国产精品XXXXX免费A片| 国产三级电影网| 狠日狠干日曰射| 久久综合一个色综合网| 免费国产成人高清在线观看视频| 女人高潮久久久叫人喷水| 女子扒开腿让男生桶爽| 人妻夜夜爽99麻豆AV| 沈阳熟女露脸对白视频| 幸福草电视剧演员表介绍| 亚洲免费在线| 中国xxxxx| qvod电影网站| 国产精品JIZZ在线观看A片| 黑人干肥婆| 美女乱草鲍高清照片| 人妻互换免费中文字幕| 无羞耻肉动漫在线观看| 亚洲免费网站观看视频| 91九色porny蝌蚪|