色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

如何利用深度學習技術處理圖像水印

WpOh_rgznai100 ? 來源:fqj ? 2019-06-07 11:32 ? 次閱讀

水印作為一種保護版權的有效方式被廣泛地應用于海量的互聯(lián)網(wǎng)圖像,針對水印的各種處理顯得越來越重要,比如水印的檢測和水印的去除與反去除。在這里我們和大家分享一下業(yè)余期間在水印智能化處理上的一些實踐和探索,希望可以幫助大家在更好地做到對他人圖像版權保護的同時,也能更好地防止自己的圖像被他人濫用。

我們大家在日常生活中如果下載和使用了帶有水印的互聯(lián)網(wǎng)圖像,往往既不美觀也可能會構成侵權。為了避免使用帶有水印的圖像帶來的各種影響,最直接的做法就是將帶有水印的圖像找出來丟棄不用,此外還有一種不推薦的做法就是去掉圖像上的水印后再使用。

接下來我們將會圍繞上述兩種大家常見的做法展開,首先介紹如何利用深度學習技術快速搭建一個水印檢測器,實現(xiàn)水印的自動檢測,同時我們還會進一步展示在水印檢測的基礎上如何利用深度學習技術設計一個水印去除器,自動將圖像上的水印去除。

一個包羅萬象的水印數(shù)據(jù)集

無論是搭建水印檢測器或是水印去除器,都需要海量水印圖像作為數(shù)據(jù)基礎。然而現(xiàn)實中并沒有直接可以使用的水印圖像數(shù)據(jù)集。因此,我們的首要任務是構建一個水印圖像數(shù)據(jù)集。首先我們要收集各式各樣的水印,為了保證后續(xù)模型良好的泛化性能,水印的種類要盡可能的多,水印樣式也要盡可能的豐富。

如何利用深度學習技術處理圖像水印

我們一共收集了80種來自于公司、組織和個人的水印,包括了中文、英文和logo等不同樣式。接下來就是制作帶水印的圖像,為了保證圖像數(shù)據(jù)的一般性,我們將公開的PASCAL VOC 2012數(shù)據(jù)集的圖像作為原始的無水印圖像,然后利用圖像處理工具將收集的80種水印以隨機的大小、位置和透明度打在原始圖像上,同時記錄下水印的位置信息,從而得到第一個大規(guī)模的水印圖像數(shù)據(jù)集。

水印數(shù)據(jù)集的80%被劃分為訓練集,剩余的20%被劃分為測試集,為了適應現(xiàn)實場景中需要機器自動檢測和去除從未見過的水印的需求,我們確保訓練集中的水印不會出現(xiàn)在測試集中,這樣可以很好地模擬現(xiàn)實生活中的使用場景。現(xiàn)在水印圖像數(shù)據(jù)集已經(jīng)準備就緒,接下來就是如何去搭建水印檢測器和去除器。

能夠一眼看穿各類水印的檢測器

水印在圖像中的視覺顯著性很低,具有面積小,顏色淺,透明度高等特點,帶水印圖像與未帶水印圖像之間的差異往往很小,區(qū)分度較低。為了構建一個有效的水印檢測器,我們將圖像水印檢測問題轉(zhuǎn)化為一種特殊的單目標檢測任務,即判斷圖像中是否有水印這一單目標存在。

當前基于深度學習的目標檢測模型有很多,可以分為以Faster R-CNN為代表的兩階段目標檢測算法和以YOLO和RetinaNet等為代表的單階段目標檢測算法。前者是先由算法生成一系列待檢測目標的候選框,再通過卷積神經(jīng)網(wǎng)絡進行候選框的分類;后者則不用產(chǎn)生候選框,直接將目標邊框定位的問題轉(zhuǎn)化為回歸問題處理。一般來說單階段的算法在檢測速度上會更快,但檢測精度上會有所下降。我們在這里分別基于Faster R-CNN、YOLOv2和RetinaNet這三種目標檢測算法來搭建水印檢測器,從對比的結果來看,三種方法都展現(xiàn)了令人滿意的檢測效果,其中以RetinaNet最優(yōu)。

如何利用深度學習技術處理圖像水印

為了更加直觀地展示我們搭建的基于RetinaNet的水印檢測器的效果,我們將測試集上的水印檢測結果可視化,藍色的框是實際的水印區(qū)域,紅色的框是檢測器定位的水印區(qū)域,從可視化結果可以看出,對于未出現(xiàn)在訓練集中的水印,我們的水印檢測器依然可以一眼就看穿。有了這樣一款水印檢測器,我們就可以在海量圖像中快速又準確地檢測出帶水印的圖像。

往前走一步:從檢測到去除

如果只是利用AI來自動檢測水印,是不是總感覺少了點什么?接下來我們在水印檢測的基礎上往前再走一步,利用AI實現(xiàn)水印的自動去除。因為水印在圖像上的面積較小,所以直接對整幅圖像進行水印去除顯得過于粗暴,也會嚴重拖慢去除速度。針對這種情況我們結合水印檢測設計了更貼合實際操作的水印處理流程,我們先通過水印檢測器檢測出水印區(qū)域,然后對水印區(qū)域進行水印去除操作。

水印去除問題可以看作是一個從圖像到圖像的轉(zhuǎn)換問題,即將帶水印的圖像轉(zhuǎn)換為無水印的圖像。這里我們使用全卷積網(wǎng)絡來搭建水印去除器,實現(xiàn)這種圖像到圖像的轉(zhuǎn)換。全卷積網(wǎng)絡的輸入是帶水印的圖像區(qū)域,經(jīng)過多層卷積處理后輸出無水印的圖像區(qū)域,我們希望網(wǎng)絡輸出的無水印圖像能夠和原始的無水印圖像盡可能的接近。

如何利用深度學習技術處理圖像水印

為了盡可能提升網(wǎng)絡輸出無水印圖像的質(zhì)量,我們采用U-net結構替換了傳統(tǒng)的編解碼器結構,將輸入信息添加到輸出中,從而盡可能保留了圖像的背景信息。同時我們采用感知損失(Perceptual Loss)和一范數(shù)損失(L1 Loss)相結合的方式替換傳統(tǒng)的均方誤差損失(MSE Loss),使輸出的無水印圖像在細節(jié)和紋理上能夠更貼近原圖。

我們將水印去除器在測試集上的一些去水印效果可視化,左列是輸入的水印區(qū)域,右列是輸出的無水印區(qū)域。從可視化的結果可以看出對未知水印的去除效果還是不錯的。

寫在最后

針對水印的各種處理一直是研究的熱點,也吸引了越來越多的關注。本文介紹了如何通過當前流行的深度學習技術來搭建水印的檢測器和去除器,實現(xiàn)對水印的智能處理。

在后續(xù)的文章中,我們會進一步介紹一種更強大的水印去除器,也會提出一些對水印反去除的思考。值得注意的是,版權保護是大家一直要堅持的事情,水印去除的研究目的更多是為了通過攻擊水印來驗證其是否有效,從而促進水印反去除能力的提升。保護版權,AI有責。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)集

    關注

    4

    文章

    1208

    瀏覽量

    24689
  • 深度學習
    +關注

    關注

    73

    文章

    5500

    瀏覽量

    121111

原文標題:如何利用深度學習技術處理圖像水印?

文章出處:【微信號:rgznai100,微信公眾號:rgznai100】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    圖像處理應用中深度學習的重要性分析

    作者:Martin Cassel,Silicon Software 工業(yè)應用中FPGA 上的神經(jīng)元網(wǎng)絡(CNN) 深度學習應用憑借其在識別應用中超高的預測準確率,在圖像處理領域獲得了極
    的頭像 發(fā)表于 12-13 11:24 ?6213次閱讀

    圖像水印

    本人學生。畢業(yè)設計是基于Labview 數(shù)字圖像水印利用LabVIEW平臺,在圖像中嵌入二值水印圖像
    發(fā)表于 05-19 14:34

    基于深度學習和3D圖像處理的精密加工件外觀缺陷檢測系統(tǒng)

    檢測,檢測準確性和檢測穩(wěn)定性較差、容易誤判。 基于深度學習和3D圖像處理的精密加工件外觀缺陷檢測系統(tǒng)創(chuàng)新性結合深度
    發(fā)表于 03-08 13:59

    基于改進曲率尺度空間技術圖像水印算法

    提出一種新的魯棒性水印算法,利用改進的曲率尺度空間技術,提取圖像的少量較頑強角點,用于重建受幾何攻擊的圖像。選取2 個chirp 信號作為
    發(fā)表于 03-24 09:56 ?12次下載

    一種有效的數(shù)字圖像水印算法

    隨著因特網(wǎng)的發(fā)展,數(shù)字水印技術被廣泛的應用于數(shù)字圖像,音頻,視頻等多媒體產(chǎn)品的版權保護。該文提出了一種有效的數(shù)字水印算法。首先利用混沌映射將
    發(fā)表于 07-09 10:19 ?19次下載

    基于DWT域的自適應彩色圖像水印算法

    近年來,彩色圖像水印技術逐漸成為了研究的熱點。本文提出了一種基于DWT 域的自適應彩色圖像水印算法。該算法
    發(fā)表于 08-27 10:50 ?15次下載

    基于HVS和小波變換的彩色圖像水印算法

    提出了一種將彩色水印圖像嵌入到原始彩色圖像中的數(shù)字水印算法。該算法對水印的加密采取了Arnold結合矩陣變換的方法,并
    發(fā)表于 07-06 15:58 ?16次下載

    深度學習圖像超清化的應用

    深度學習的出現(xiàn)使得算法對圖像的語義級操作成為可能。本文即是介紹深度學習技術
    發(fā)表于 09-30 11:15 ?1次下載
    <b class='flag-5'>深度</b><b class='flag-5'>學習</b>在<b class='flag-5'>圖像</b>超清化的應用

    基于Weber準則的圖像脆弱盲水印技術研究

    提出了一種應用于醫(yī)學圖像認證的基于Weber準則的脆弱盲水印技術,基于Weber準則選擇圖像中的像素并插入脆弱水印。由于這種
    發(fā)表于 12-07 10:13 ?1次下載
    基于Weber準則的<b class='flag-5'>圖像</b>脆弱盲<b class='flag-5'>水印</b><b class='flag-5'>技術</b>研究

    數(shù)字圖像水印的FPGA實現(xiàn)步驟

    未加水印圖像表示為f水印表示為w,常數(shù)a控制水印和襯底圖像的相對可見性。如果a為1,則水印是不
    發(fā)表于 07-03 08:22 ?2496次閱讀

    如何在圖像處理中應用深度學習技術的詳細資料概述

    深度學習應用憑借其在識別應用中超高的預測準確率,在圖像處理領域獲得了極大關注,這勢必將提升現(xiàn)有圖像處理
    的頭像 發(fā)表于 03-30 11:31 ?4441次閱讀

    深度學習圖像分割的方法和應用

    分析和分類以及機器人和自動駕駛車輛的圖像處理等應用上。 許多計算機視覺任務需要對圖像進行智能分割,以理解圖像中的內(nèi)容,并使每個部分的分析更加容易。今天的
    的頭像 發(fā)表于 11-27 10:29 ?3169次閱讀

    結合BEMD與Hilbert的重復嵌入圖像水印算法

    )與 Hilbert曲線的重復嵌入圖像水印算法。首先,利用 Arnold變換對水印圖像進行置亂處理
    發(fā)表于 04-21 14:37 ?1次下載
    結合BEMD與Hilbert的重復嵌入<b class='flag-5'>圖像</b><b class='flag-5'>水印</b>算法

    深度學習中的圖像分割

    深度學習可以學習視覺輸入的模式,以預測組成圖像的對象類。用于圖像處理的主要
    的頭像 發(fā)表于 05-05 11:35 ?1250次閱讀

    OpenCV庫在圖像處理深度學習中的應用

    本文深入淺出地探討了OpenCV庫在圖像處理深度學習中的應用。從基本概念和操作,到復雜的圖像變換和深度
    的頭像 發(fā)表于 08-18 11:33 ?876次閱讀
    主站蜘蛛池模板: 相声flash| 99久久热视频只有精品| 成人亚洲乱码在线| 久久精品123| 四川老师边上网课边被啪视频| 真实国产精品视频国产网| 国产精品成人免费| 欧美雌雄双性人交xxxx| 亚洲青青青网伊人精品| 国产成人女人视频在线观看| 免费一区在线观看| 亚洲一区国产| 国产乱人视频在线观看| 秋霞影院福利电影| 999zyz色资源站在线观看| 久久精品电影| 亚洲高清一区二区三区电影| 动漫AV纯肉无码AV电影网| 柠檬福利精品视频导航| 在线 国产 欧美 亚洲 天堂 | 免费人成在线观看网站视频| 亚洲视频免费看| 国产日韩亚洲专区无码| 骚浪插深些好烫喷了| 青青草国产偷拍在线av| 亚洲精品喷白浆在线观看| 最新国产亚洲亚洲精品视频| 成人毛片免费观看视频大全| 免费国产足恋网站| 甜性涩爱全集在线观看| 成电影人免费网站| 欧美精品成人久久网站| 5g天天奭视频| 蓝男色gay| 孕妇bbwbbwbbwbbw超清| 久久久这里有精品999| 野花日本大全免费高清完整版 | 秋霞最新高清无码鲁丝片| jijzzizz中国版| 啪啪做羞羞事小黄文| av亚洲色天堂2017|