色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

英特爾如何破解AI時代的大數據難題?

7GLE_Intelzhiin ? 來源:yxw ? 2019-06-18 17:20 ? 次閱讀

“我們之所以推出Analytics Zoo這樣的大數據分析和人工智能平臺,就是希望讓用戶在實際的生產環境中可以更方便地構建深度學習應用,將不同的模塊、不同的框架統一到端到端流水線上,從而大幅提升客戶開發部署大數據分析和深度學習的能力。”英特爾高級首席工程師、大數據技術全球CTO戴金權說。

已供職英特爾近17年的戴金權如今負責領導英特爾全球(硅谷和上海)工程團隊高級大數據分析的研發工作,以及與全球研究機構(如UC Berkeley AMPLab、RISELab等)的技術合作,是BigDL和Analytics Zoo項目的創始人。

為了幫助客戶在數據的海洋中抓住商業價值,并且讓這一過程通過更加智能化的手段變得簡單易用,英特爾在底層架構和軟件堆棧領域一直在持續投入。在2019全球人工智能技術大會上,戴金權分享了英特爾構建大數據分析+AI平臺背后的思考和實踐,而兩大開源項目BigDL、Analytics Zoo可謂是其中的代表。

BigDL是一個建立在大數據平臺之上原生的分布式深度學習庫,某種程度上類似Tensorflow、Caffe等DL框架,提供了在Apache Spark上豐富的深度學習功能,以幫助Hadoop/Spark成為統一的數據分析平臺,為整個數據分析和機器學習過程提供比現有框架更加集成化的支持。Analytics Zoo則是在Apache Spark、BigDL以及TensorFLow、Keras的基礎上構建的大數據分析+AI平臺,大幅降低用戶開發基于大數據、端到端深度學習應用的門檻。

生產環境面臨數據難題

《連線》雜志創始主編Kevin Kelly曾說:“大數據時代,沒有人能夠成為旁觀者,數據將‘橫掃一切’。”隨著萬物互聯時代的到來,數據對于客戶需求的指導性意義愈發凸顯,如何采集、傳輸、存儲、分析、處理數據成為各行各業攫取數字經濟紅利的必備技能,可以說“數據在哪里,生意就在哪里”。

而英特爾所做的事情,就是讓這一切變得簡單高效。“如今深度學習、人工智能的應用場景更加廣泛,要處理的數據也更加復雜,所以要構建端到端的大數據處理分析加上機器學習、深度學習的統一流水線。”戴金權說。

不過要做到這些并不容易,當前的生產系統中基于Apache Spark這樣的大數據集群仍是生產數據和大量硬件資源的聚集地,這樣生產資料和生產工具要通過AI應用串聯起來。同時,工業級的分析平臺需要對數據收集/導入/處理、特征提取、模型訓練、部署、推理等一系列的復雜工作流做出響應,難度可想而知。

從架構角度來看,很多獨立的深度學習框架與大數據平臺的架構存在差異,例如前者對高性能有著格外的要求,后者更注重于橫向擴展,這樣一來就需要在一個通用的大數據平臺上將不同的分布式深度學習系統統一兼容起來。此外,無論是利用Spark還是像Flink這樣的流處理框架,都要將數據處理的流水線和深度學習相互連接,在數十甚至是數千個節點的集群上提升計算效率和可擴展性。

從生產角度來看,像工業大數據在構建數據倉庫時往往會面對高達數百個KPI的流程處理,而且不同企業所面臨的數據類型和需求也是千差萬別,例如有些偏向對圖像或視頻數據的建模、訓練、推理,需要很多的卷積神經網絡優化(CNN),而有些則是時序數據,要收集設備每秒鐘的振動頻率,并對這些數據進行循環神經網絡(RNN)的分析。

由此引發出來的兩個挑戰,一是要手動把不同框架整合起來,二是用戶在處理數據時不再是單機環境,而是要在大規模分布式環境、甚至是生產環境中操作。

戴金權談到,無論是阿里云、騰訊云等CSP廠商,還是硬件OEM廠商、軟件提供商,其主要訴求都是希望將深度學習等AI框架和模型應用于數據在生產系統上跑起來,這也是客戶使用Analytics Zoo的一個重要原因,“我們可以幫助用戶將大數據分析+AI應用在端到端的流水線上輕松構建出來,它可以從PC終端運行到集群、生產環境當中,這是我們在底層Analytics Zoo所做的工作。”

端到端的一致性體驗

在Analytics Zoo之下,英特爾集成了豐富的深度學習框架和庫,可以隨時調用OpenVINO工具包、MKL-DNN等各種深度學習加速指令。同時,英特爾在上層也提供了高級的流水線API用于構建端到端的應用,以及深度學習模型,對圖片、文本、時間序列數據等不同類型的對象提供支持,用戶可以直接將內嵌的模型嵌入到解決方案中。

舉例來說,英特爾可以將TensorFlow和Apache Spark整合到端到端的流水線中,讓TensorFlow無縫接受Apache Spark處理的數據,并且對用戶透明,以分布式的方式運行在大數據集群上。此外,還提供了像基于標準JAVAPython、Web Server、深度學習尤其是視覺方面的神經網絡加速,幫助用戶更方便地部署到網絡服務器上,幫助用戶更好地構建模型和開展服務。

這一過程中,英特爾不僅在性能層面圍繞BigDL、Analytics Zoo做了大量優化,還有效解決了可編程性的問題,使得用戶可以在Spark代碼中嵌入TensorFlow代碼,省去了不同框架之間反復調試等復雜的流程。在可擴展性和部署方面,開發人員可以直接在大規模數據平臺進行作業,這里就發揮了Analytics Zoo在大規模分布式、流式、批處理時的特性。

“我們可以支持各種不同的深度學習框架,比如要是原來有Caffe的模型,可以直接通過BigDL、Analytics Zoo加載到Spark運行,然后對HBase讀取數據,這個天然就是Spark可以做的事情。后面深度學習的模型通過BigDL、Analytics Zoo的功能,可以透明、無縫的與大數據處理相結合,整個開發過程是非常簡單的。”戴金權表示,“所有分布式的任務、數據的分割、負載均衡,出錯后如何處理,這些事情不再需要開發人員來擔心,完全可以交給大數據平臺來做,效率能夠大幅提升。”

Analytics Zoo支持多種AI框架和庫

即將發布的0.5.0版Analytics Zoo,英特爾會結合傲騰數據中心級持久內存等新的硬件平臺對軟件算法進行支持和優化,如Spark RDD的緩存機制在內存中計算訓練數據可以實現降本增效、VNNI指令集可以大幅提升AI性能。框架語言多元化方面,英特爾除了會支持PyTorch,還將加入對像RISELab的Ray等最新框架的支持。

智能化改造效果顯著

一直以來,英特爾都在與開源社區用戶,以及多個合作伙伴和客戶開展廣泛合作,包括京東、UCSF、Mastercard、寶信軟件、世界銀行、Cray等,以構建基于Apache Spark的深度學習 和人工智能應用,而BigDL和Analytics Zoo將端到端的開發和部署體驗更進一步。例如在京東,雙方基于Spark和BigDL的深度學習技術在搭建大規模圖片特征提取框架上進行了合作。

京東電商平臺的圖像信息數以億計,分布在大規模的HBase集群中,過去要使用Caffe將訓練出來的模型放在GPU集群上,如果想把流水線串聯起來就要通過人工的方法把數據從HBase讀出來后對圖片預處理,再返回給GPU集群進行推理,如此反復數次后將得到的數據再次手動整合起來,開發運行效率和部署方式都存在問題。

對此,英特爾認為應該將讀取、處理、神經網絡推理、數據處理和存儲等全流程統一到一個流水線上進行,并且可以直接運行再大數據集群上,進而大幅提升端到端的效率。“京東做過測試,當他們把原來的方案整體遷移到Spark BigDL這樣一個完整的流水線上 (基于CPU)之后,端到端的運行效率提高了3、4倍。”戴金權說。

基于BigDL的圖像特征提取

K40和Xeon在圖片特征提取流水線的吞吐量比較

與寶信軟件的合作,雙方則是在深度學習的基礎上探索出了設備智能維護的新方向。在工業制造行業,通常對由設備失效導致的生產中斷問題,所給出的解決方法是定期檢修維護或者提前更換設備零部件,成本居高不下。

在英特爾的幫助下,兩家公司開發了設備故障自動預測的驗證模型,該模型基于公開的設備全生命周期數據,利用RNN和LSTM,實現了時間序列的異常檢測,可以借助無監督深度學習和建模對設備下一時刻的運行健康狀況進行預判,降低了額外的設備維護成本。

在和這些行業客戶聯合研發的過程中,英特爾也切實看到了場景應用的痛點所在,那就是盡管企業在深度學習、機器學習的技術研發上投入頗多,但怎樣將這些創新融入實踐環境,尤其是大規模的大數據生產系統,在軟硬件架構的支持和優化上存在不小的缺陷,而這一“斷層”就是英特爾致力于去彌合的,方法即是利用開源和軟硬結合的路徑。

Analytics Zoo與底層硬件的優化,并且可與CSP的產品無縫協作

軟件與開源的新高度

就像英特爾首席架構師,英特爾公司高級副總裁兼架構、圖形與軟件部門總經理Raja Koduri所說的:“對于全新硬件架構的每一個數量級的性能提升潛力,軟件能帶來超過兩個數量級的性能提升。”這樣的例子比比皆是,戴金權以Cascade Lake上的VNNI深度學習加速指令為例,通過在底層的軟硬件協同優化,可根據不同DL框架將推理性能加速2-3倍甚至更多。

在英特爾的軟件生態中,活躍著超過1200萬名開發者,為了讓開發者利用通用工具集實現應用性能的指數級擴展,英特爾推出了“One API”項目,以簡化跨CPU、GPU、FPGA、人工智能和其它加速器的各種計算引擎的編程,該項目包括一個全面、統一的開發工具組合,可以將軟件匹配到能最大程度加速軟件代碼的硬件上,從而讓英特爾的計算架構釋放出更高的性能和效率。

戴金權表示:“無論是基于至強(可擴展處理器)的服務器,還是像Movidius、FPGA,神經網絡處理器,包括將來的獨立顯卡,都可以通過One API下面的底層生態系統來給上層的平臺和應用所使用。”

為了讓用戶在x86平臺上獲得更優質的體驗,英特爾一直都在致力于軟件的創新,開源更是英特爾軟件生態策略的重要體現,不僅對TensorflowPyTorch、MXNet、PaddlePaddle等AI框架進行了大量優化,自己也開源了BigDL、Analytics Zoo、OpenVINO、MKL-DNN、nGraph等項目,戴金權本人更是Apache Spark項目的創始委員和項目管理委員會委員、Apache MXNet項目導師。

此外,在前不久的英特爾開源技術峰會(Intel Open Source Technical Summit,OSTS)上,筆者看到了高性能集成開源軟件棧Deep Learning Reference Stack與企業分析、分類、識別和數據處理工具Data Analytics Reference Stack的發布,這些都是英特爾為了融合從框架、庫、OS、VM等軟件到硬件平臺優化體驗所做出的努力。

或許是因為英特爾在半導體領域的地位過于強勢,外界常常忽視其在軟件和開源領域的成績。事實上,英特爾擁有超過15000名軟件工程師,軟件布局橫跨數據中心基礎設施、操作系統、產品開發、ISV、工具/SDK、云計算物聯網、AI、HPC、邊緣計算等領域。

過去的6個月時間里,英特爾在軟件領域取得了數百項成果,包括從JDK8到JDK9,將現有硬件的性能提升6倍;結合內存層級架構,加上軟件棧技術,通過傲騰+軟件的方式將工作負載的性能提升8倍;利用DL Boost等架構擴展,使得從Skylake升級到Cascade Lake之后,相比上一代硬件提速28倍……這一系列的表現若是從硬件的角度看都是數代的硬件性能提升。

這一切的背后都在印證,軟硬結合、開源協作已經變得越來越重要。正如戴金權在采訪中對筆者所說的:“如果想實現指數級的增長,必須要硬件和軟件共同創新。軟件社區和硬件社區相互交流,并真正去思考彼此的問題,這比以往任何時候都更加關鍵。”

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴
  • 處理器
    +關注

    關注

    68

    文章

    19404

    瀏覽量

    230789
  • 英特爾
    +關注

    關注

    61

    文章

    10007

    瀏覽量

    172149
  • AI
    AI
    +關注

    關注

    87

    文章

    31490

    瀏覽量

    269897
  • 大數據
    +關注

    關注

    64

    文章

    8908

    瀏覽量

    137648

原文標題:英特爾如何破解AI時代的大數據難題?

文章出處:【微信號:Intelzhiin,微信公眾號:知IN】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    英特爾發布全新企業AI一體化方案

    近日,英特爾正式推出了全新的企業AI一體化方案。該方案以英特爾至強處理器和英特爾Gaudi 2D AI加速器為核心硬件,結合OPEA開放軟件
    的頭像 發表于 12-03 11:20 ?276次閱讀

    英特爾與火山引擎飛連攜手升級AI時代企業IT管理體驗

    AI 技術的推動下,企業 IT 管理正經歷一場革命。日前,火山引擎飛連新品發布會成功舉辦。英特爾受邀參與此次活動,并在會上展示了新一代英特爾凌動 x7000 系列處理器等產品,與火山引擎飛連攜手升級
    的頭像 發表于 11-14 17:17 ?570次閱讀

    英特爾計劃明年AI PC出貨一億臺

    英特爾設定明年AI PC出貨目標為一億臺,較2024年原定計劃激增150%   英特爾銷售與營銷部總監Jack Huang于10月28日透露,公司計劃在明年實現一億臺AI PC的
    的頭像 發表于 10-31 14:26 ?484次閱讀

    英特爾聚焦AI座艙

    英特爾推出首款銳炫車載獨立顯卡(dGPU)和第一代英特爾軟件定義車載SoC系列,滿足當前消費者對汽車內部配備更多屏幕、獲得更高清晰度等AI座艙體驗需求。 英特爾副總裁、汽車事業部總經理
    的頭像 發表于 10-30 16:26 ?236次閱讀

    英特爾與百度共同為AI時代打造高性能基礎設施

    可持續發展等領域的實踐與探索,并圍繞為AI時代的產業發展和升級提供“芯”動力等話題進行深入探討。 英特爾市場營銷集團副總裁、中國區云與行業解決方案和數據中心銷售部總經理梁雅莉指出,“為
    的頭像 發表于 09-27 09:48 ?298次閱讀
    <b class='flag-5'>英特爾</b>與百度共同為<b class='flag-5'>AI</b><b class='flag-5'>時代</b>打造高性能基礎設施

    英特爾亮相2024云棲大會,共話AI時代發展新機

    搭載該處理器的阿里云ECS第九代企業級計算實例并分享了一系列最新合作進展——以出色性能為代表的先進特性將助力下一代數據中心升級,并為大模型時代企業AI的落地與發展提供強有力的支持。 英特爾
    的頭像 發表于 09-23 09:18 ?396次閱讀
    <b class='flag-5'>英特爾</b>亮相2024云棲大會,共話<b class='flag-5'>AI</b><b class='flag-5'>時代</b>發展新機

    英特爾IT的發展現狀和創新動向

    AI大模型的爆發,客觀上給IT的發展帶來了巨大的機會。作為把IT發展上升為戰略高度的英特爾,自然在推動IT發展中注入了強勁動力。英特爾IT不僅專注于創新、AI和優化,以及
    的頭像 發表于 08-16 15:22 ?624次閱讀

    英特爾發布AI創作應用AI Playground,將于今夏正式上線!

    AI PC入門應用程序AI Playground,讓廣大用戶在本地即可快速實現AI個性化創作。 英特爾Xe2 GPU架構,帶來50%的性能提升
    的頭像 發表于 06-14 09:44 ?515次閱讀
    <b class='flag-5'>英特爾</b>發布<b class='flag-5'>AI</b>創作應用<b class='flag-5'>AI</b> Playground,將于今夏正式上線!

    英特爾CEO:AI時代英特爾動力不減

    英特爾CEO帕特·基辛格堅信,在AI技術的飛速發展之下,英特爾的處理器仍能保持其核心地位。基辛格公開表示,摩爾定律仍然有效,而英特爾在處理器和芯片技術上的創新能力將持續驅動公司前進。
    的頭像 發表于 06-06 10:04 ?474次閱讀

    英特爾澎湃動力驅動商用AI PC,打造AI+時代的新質生產工具

    近日,英特爾舉辦了“2024全新英特爾商用客戶端AI PC產品發布會”,將基于英特爾酷睿Ultra處理器的AI特性延展到商用領域,帶來商用電
    的頭像 發表于 04-02 10:12 ?475次閱讀

    英特爾酷睿Ultra通過全新英特爾vPro平臺將AI PC惠及企業

    近日,英特爾在2024年世界移動通信大會(MWC 2024)上宣布,全新英特爾?vPro?平臺將AI PC的優勢惠及商用客戶。
    的頭像 發表于 03-18 15:07 ?569次閱讀

    英特爾發布全新邊緣計算平臺,解決AI邊緣落地難題

    2030年,至少一半的邊緣計算部署將納入AI。 ? 英特爾全新商用邊緣計算平臺 ? 英特爾認為,我們已經進入了AI無處不在的時代,邊緣計算將
    的頭像 發表于 03-12 09:06 ?4398次閱讀
    <b class='flag-5'>英特爾</b>發布全新邊緣計算平臺,解決<b class='flag-5'>AI</b>邊緣落地<b class='flag-5'>難題</b>

    英特爾首推面向AI時代的系統級代工

    英特爾宣布全新制程技術路線圖、客戶及生態伙伴合作,以實現2030年成為全球第二大代工廠的目標。 新聞亮點: ?英特爾首推面向AI時代的系統級代工——
    的頭像 發表于 02-26 15:41 ?430次閱讀
    <b class='flag-5'>英特爾</b>首推面向<b class='flag-5'>AI</b><b class='flag-5'>時代</b>的系統級代工

    英特爾首推面向AI時代的系統級代工—英特爾代工

    英特爾首推面向AI時代的系統級代工——英特爾代工(Intel Foundry),在技術、韌性和可持續性方面均處于領先地位。
    的頭像 發表于 02-25 10:38 ?589次閱讀
    <b class='flag-5'>英特爾</b>首推面向<b class='flag-5'>AI</b><b class='flag-5'>時代</b>的系統級代工—<b class='flag-5'>英特爾</b>代工

    英特爾推出面向AI時代的系統級代工,并更新制程技術路線圖

    英特爾公司近日宣布,將推出全新的系統級代工服務——英特爾代工(Intel Foundry),以滿足AI時代對先進制程技術的需求。這一舉措標志著英特爾
    的頭像 發表于 02-23 18:23 ?1569次閱讀
    主站蜘蛛池模板: 外女思春台湾三级 | 99精品国产第一福利网站 | 99九九99九九九视频精品 | 亚洲欧美日韩人成 | 在线观看国产小视频 | 久久亚洲AV无码精品午色夜麻豆 | 97超在线视频 | 中文字幕一区二区三区在线观看 | 亚洲精品偷拍影视在线观看 | 五花大绑esebdsm国产 | 人妻少妇偷人精品无码洋洋AV | 国产精品久久人妻互换毛片 | 亚洲精品资源网在线观看 | 亚洲 日韩 欧美 国产专区 | 葵司中文第一次大战黑人 | 十九禁啊啪射视频在线观看 | 高h 纯肉文 | 久久天天躁狠狠躁夜夜呲 | 国产精人妻无码一区麻豆 | 国产日韩欧美有码在线视频 | 天美传媒在线观看完整高清 | 一一本之道高清视频在线观看中文字幕 | 快穿做妓女好爽H | 9966在线观看免费高清电影 | 亚洲国产成人私人影院 | 国产在线一区二区AV视频 | 久久超碰色中文字幕 | 欧美亚洲国产激情一区二区 | 69式国产真人免费视频 | 九九精彩视频在线观看视频 | 国产色婷婷精品人妻蜜桃成熟 | 永久免费毛片 | 亚洲精品第二页 | 亚洲黄色在线观看 | 熟妇久久无码人妻AV蜜桃 | 性色欲情网站IWWW | 欧美 另类 美腿 亚洲 无码 | 国产AV亚洲国产AV麻豆 | 国产精品久久久久久人妻精品流 | 久久国产36精品色熟妇 | 最新国自产拍天天更新 |