第一部分 最大額定參數(shù)
最大額定參數(shù),所有數(shù)值取得條件(Ta=25℃)
在柵源短接,漏-源額定電壓(VDSS)是指漏-源未發(fā)生雪崩擊穿前所能施加的最大電壓。根據(jù)溫度的不同,實(shí)際雪崩擊穿電壓可能低于額定VDSS。關(guān)于V(BR)DSS的詳細(xì)描述請(qǐng)參見靜電學(xué)特性.
VGS 最大柵源電壓
VGS額定電壓是柵源兩極間可以施加的最大電壓。設(shè)定該額定電壓的主要目的是防止電壓過(guò)高導(dǎo)致的柵氧化層損傷。實(shí)際柵氧化層可承受的電壓遠(yuǎn)高于額定電壓,但是會(huì)隨制造工藝的不同而改變,因此保持VGS在額定電壓以內(nèi)可以保證應(yīng)用的可靠性。
ID - 連續(xù)漏電流
ID定義為芯片在最大額定結(jié)溫TJ(max)下,管表面溫度在25℃或者更高溫度下,可允許的最大連續(xù)直流電流。該參數(shù)為結(jié)與管殼之間額定熱阻RθJC和管殼溫度的函數(shù):
ID中并不包含開關(guān)損耗,并且實(shí)際使用時(shí)保持管表面溫度在25℃(Tcase)也很難。因此,硬開關(guān)應(yīng)用中實(shí)際開關(guān)電流通常小于ID 額定值@ TC = 25℃的一半,通常在1/3~1/4。補(bǔ)充,如果采用熱阻JA的話可以估算出特定溫度下的ID,這個(gè)值更有現(xiàn)實(shí)意義。
IDM -脈沖漏極電流
該參數(shù)反映了器件可以處理的脈沖電流的高低,脈沖電流要遠(yuǎn)高于連續(xù)的直流電流。定義IDM的目的在于:線的歐姆區(qū)。對(duì)于一定的柵-源電壓,MOSFET導(dǎo)通后,存在最大的漏極電流。如圖所示,對(duì)于給定的一個(gè)柵-源電壓,如果工作點(diǎn)位于線性區(qū)域內(nèi),漏極電流的增大會(huì)提高漏-源電壓,由此增大導(dǎo)通損耗。長(zhǎng)時(shí)間工作在大功率之下,將導(dǎo)致器件失效。因此,在典型柵極驅(qū)動(dòng)電壓下,需要將額定IDM設(shè)定在區(qū)域之下。區(qū)域的分界點(diǎn)在Vgs和曲線相交點(diǎn)。
因此需要設(shè)定電流密度上限,防止芯片溫度過(guò)高而燒毀。這本質(zhì)上是為了防止過(guò)高電流流經(jīng)封裝引線,因?yàn)樵谀承┣闆r下,整個(gè)芯片上最“薄弱的連接”不是芯片,而是封裝引線。
考慮到熱效應(yīng)對(duì)于IDM的限制,溫度的升高依賴于脈沖寬度,脈沖間的時(shí)間間隔,散熱狀況,RDS(on)以及脈沖電流的波形和幅度。單純滿足脈沖電流不超出IDM上限并不能保證結(jié)溫不超過(guò)最大允許值。可以參考熱性能與機(jī)械性能中關(guān)于瞬時(shí)熱阻的討論,來(lái)估計(jì)脈沖電流下結(jié)溫的情況。
PD -容許溝道總功耗
容許溝道總功耗標(biāo)定了器件可以消散的最大功耗,可以表示為最大結(jié)溫和管殼溫度為25℃時(shí)熱阻的函數(shù)。
TJ, TSTG-工作溫度和存儲(chǔ)環(huán)境溫度的范圍
這兩個(gè)參數(shù)標(biāo)定了器件工作和存儲(chǔ)環(huán)境所允許的結(jié)溫區(qū)間。設(shè)定這樣的溫度范圍是為了滿足器件最短工作壽命的要求。如果確保器件工作在這個(gè)溫度區(qū)間內(nèi),將極大地延長(zhǎng)其工作壽命。
EAS-單脈沖雪崩擊穿能量
如果電壓過(guò)沖值(通常由于漏電流和雜散電感造成)未超過(guò)擊穿電壓,則器件不會(huì)發(fā)生雪崩擊穿,因此也就不需要消散雪崩擊穿的能力。雪崩擊穿能量標(biāo)定了器件可以容忍的瞬時(shí)過(guò)沖電壓的安全值,其依賴于雪崩擊穿需要消散的能量。
定義額定雪崩擊穿能量的器件通常也會(huì)定義額定EAS。額定雪崩擊穿能量與額定UIS具有相似的意義。EAS標(biāo)定了器件可以安全吸收反向雪崩擊穿能量的高低。
L是電感值,iD為電感上流過(guò)的電流峰值,其會(huì)突然轉(zhuǎn)換為測(cè)量器件的漏極電流。電感上產(chǎn)生的電壓超過(guò)MOSFET擊穿電壓后,將導(dǎo)致雪崩擊穿。雪崩擊穿發(fā)生時(shí),即使 MOSFET處于關(guān)斷狀態(tài),電感上的電流同樣會(huì)流過(guò)MOSFET器件。電感上所儲(chǔ)存的能量與雜散電感上存儲(chǔ),由MOSFET消散的能量類似。
MOSFET并聯(lián)后,不同器件之間的擊穿電壓很難完全相同。通常情況是:某個(gè)器件率先發(fā)生雪崩擊穿,隨后所有的雪崩擊穿電流(能量)都從該器件流過(guò)。
EAR -重復(fù)雪崩能量
重復(fù)雪崩能量已經(jīng)成為“工業(yè)標(biāo)準(zhǔn)”,但是在沒(méi)有設(shè)定頻率,其它損耗以及冷卻量的情況下,該參數(shù)沒(méi)有任何意義。散熱(冷卻)狀況經(jīng)常制約著重復(fù)雪崩能量。對(duì)于雪崩擊穿所產(chǎn)生的能量高低也很難預(yù)測(cè)。
額定EAR的真實(shí)意義在于標(biāo)定了器件所能承受的反復(fù)雪崩擊穿能量。該定義的前提條件是:不對(duì)頻率做任何限制,從而器件不會(huì)過(guò)熱,這對(duì)于任何可能發(fā)生雪崩擊穿的器件都是現(xiàn)實(shí)的。在驗(yàn)證器件設(shè)計(jì)的過(guò)程中,最好可以測(cè)量處于工作狀態(tài)的器件或者熱沉的溫度,來(lái)觀察MOSFET器件是否存在過(guò)熱情況,特別是對(duì)于可能發(fā)生雪崩擊穿的器件。
IAR - 雪崩擊穿電流
對(duì)于某些器件,雪崩擊穿過(guò)程中芯片上電流集邊的傾向要求對(duì)雪崩電流IAR進(jìn)行限制。這樣,雪崩電流變成雪崩擊穿能量規(guī)格的“精細(xì)闡述”;其揭示了器件真正的能力。
第二部分 靜態(tài)電特性
V(BR)DSS:漏-源擊穿電壓(破壞電壓)
V(BR)DSS(有時(shí)候叫做VBDSS)是指在特定的溫度和柵源短接情況下,流過(guò)漏極電流達(dá)到一個(gè)特定值時(shí)的漏源電壓。這種情況下的漏源電壓為雪崩擊穿電壓。
V(BR)DSS是正溫度系數(shù),溫度低時(shí)V(BR)DSS小于25℃時(shí)的漏源電壓的最大額定值。在-50℃, V(BR)DSS大約是25℃時(shí)最大漏源額定電壓的90%。
VGS(th),VGS(off):閾值電壓
VGS(th)是指加的柵源電壓能使漏極開始有電流,或關(guān)斷MOSFET時(shí)電流消失時(shí)的電壓,測(cè)試的條件(漏極電流,漏源電壓,結(jié)溫)也是有規(guī)格的。正常情況下,所有的MOS柵極器件的閾值電壓都會(huì)有所不同。因此,VGS(th)的變化范圍是規(guī)定好的。VGS(th)是負(fù)溫度系數(shù),當(dāng)溫度上升時(shí),MOSFET將會(huì)在比較低的柵源電壓下開啟。
RDS(on):導(dǎo)通電阻
RDS(on)是指在特定的漏電流(通常為ID電流的一半)、柵源電壓和25℃的情況下測(cè)得的漏-源電阻。
IDSS:零柵壓漏極電流
IDSS是指在當(dāng)柵源電壓為零時(shí),在特定的漏源電壓下的漏源之間泄漏電流。既然泄漏電流隨著溫度的增加而增大,IDSS在室溫和高溫下都有規(guī)定。漏電流造成的功耗可以用IDSS乘以漏源之間的電壓計(jì)算,通常這部分功耗可以忽略不計(jì)。
IGSS ―柵源漏電流
IGSS是指在特定的柵源電壓情況下流過(guò)柵極的漏電流。
第三部分 動(dòng)態(tài)電特性
Ciss :輸入電容
將漏源短接,用交流信號(hào)測(cè)得的柵極和源極之間的電容就是輸入電容。Ciss是由柵漏電容Cgd和柵源電容Cgs并聯(lián)而成,或者Ciss = Cgs +Cgd。當(dāng)輸入電容充電致閾值電壓時(shí)器件才能開啟,放電致一定值時(shí)器件才可以關(guān)斷。因此驅(qū)動(dòng)電路和Ciss對(duì)器件的開啟和關(guān)斷延時(shí)有著直接的影響。
Coss :輸出電容
將柵源短接,用交流信號(hào)測(cè)得的漏極和源極之間的電容就是輸出電容。Coss是由漏源電容Cds和柵漏電容Cgd并聯(lián)而成,或者Coss = Cds +Cgd對(duì)于軟開關(guān)的應(yīng)用,Coss非常重要,因?yàn)樗赡芤痣娐返闹C振
Crss :反向傳輸電容
在源極接地的情況下,測(cè)得的漏極和柵極之間的電容為反向傳輸電容。反向傳輸電容等同于柵漏電容。Cres =Cgd,反向傳輸電容也常叫做米勒電容,對(duì)于開關(guān)的上升和下降時(shí)間來(lái)說(shuō)是其中一個(gè)重要的參數(shù),他還影響這關(guān)斷延時(shí)時(shí)間。電容隨著漏源電壓的增加而減小,尤其是輸出電容和反向傳輸電容。
Qgs, Qgd, 和 Qg :柵電荷
柵電荷值反應(yīng)存儲(chǔ)在端子間電容上的電荷,既然開關(guān)的瞬間,電容上的電荷隨電壓的變化而變化,所以設(shè)計(jì)柵驅(qū)動(dòng)電路時(shí)經(jīng)常要考慮柵電荷的影響。
Qgs從0電荷開始到第一個(gè)拐點(diǎn)處,Qgd是從第一個(gè)拐點(diǎn)到第二個(gè)拐點(diǎn)之間部分(也叫做“米勒”電荷),Qg是從0點(diǎn)到VGS等于一個(gè)特定的驅(qū)動(dòng)電壓的部分。
漏電流和漏源電壓的變化對(duì)柵電荷值影響比較小,而且柵電荷不隨溫度的變化。測(cè)試條件是規(guī)定好的。柵電荷的曲線圖體現(xiàn)在數(shù)據(jù)表中,包括固定漏電流和變化漏源電壓情況下所對(duì)應(yīng)的柵電荷變化曲線。在圖中平臺(tái)電壓VGS(pl)隨著電流的增大增加的比較小(隨著電流的降低也會(huì)降低)。平臺(tái)電壓也正比于閾值電壓,所以不同的閾值電壓將會(huì)產(chǎn)生不同的平臺(tái)電壓。
下面這個(gè)圖更加詳細(xì),應(yīng)用一下:
td(on) :導(dǎo)通延時(shí)時(shí)間
導(dǎo)通延時(shí)時(shí)間是從當(dāng)柵源電壓上升到10%柵驅(qū)動(dòng)電壓時(shí)到漏電流升到規(guī)定電流的10%時(shí)所經(jīng)歷的時(shí)間。
td(off) :關(guān)斷延時(shí)時(shí)間
關(guān)斷延時(shí)時(shí)間是從當(dāng)柵源電壓下降到90%柵驅(qū)動(dòng)電壓時(shí)到漏電流降至規(guī)定電流的90%時(shí)所經(jīng)歷的時(shí)間。這顯示電流傳輸?shù)截?fù)載之前所經(jīng)歷的延遲。
tr :上升時(shí)間
上升時(shí)間是漏極電流從10%上升到90%所經(jīng)歷的時(shí)間。
tf :下降時(shí)間
下降時(shí)間是漏極電流從90%下降到10%所經(jīng)歷的時(shí)間。
更多技術(shù)干貨內(nèi)容請(qǐng)穩(wěn)步到“電子發(fā)燒友網(wǎng)”公眾號(hào),回復(fù)資料即可免費(fèi)獲取一份技術(shù)資料,在這里每天可以獲取最專業(yè)、最前沿的電子技術(shù)。
-
功率MOS管
+關(guān)注
關(guān)注
3文章
11瀏覽量
6705
原文標(biāo)題:【詳細(xì)實(shí)用】中文圖解功率MOS管的每一個(gè)參數(shù)!
文章出處:【微信號(hào):elecfans,微信公眾號(hào):電子發(fā)燒友網(wǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
評(píng)論