差動放大器電路又叫差分電路,它可以有效地放大交流信號,而且還能夠有效地減小由于電源波動和晶體管隨溫度變化多引起的零點漂移。被大量的應用于集成運放電路,常被用作多級放大器的前置級。
差分放大器工作原理和基本電路形式
差動放大器原理:
差動放大電路的基本形式對電路的要求是:兩個電路的參數完全對稱兩個管子的溫度特性也完全對稱。
它的工作原理是:當輸入信號Ui=0時,則兩管的電流相等,兩管的集電極電位也相等,所以輸出電壓Uo=UC1-UC2=0。溫度上升時,兩管電流均增加,則集電極電位均下降,由于它們處于同一溫度環境,因此兩管的電流和電壓變化量均相等,其輸出電壓仍然為零。
它的放大作用輸入信號主要有兩種類型:共模信號 和 差模信號。
雖然運放電路為典型的雙端輸入、單端輸出的三端器件,但上文所述多為單端應用(即一端用于信號輸入,一端接地),由此可以看出任一信號回路的兩端特性,一端接地,一端即信號。就同相放大器而言,信號輸入同相端,反相器必有接地回路;就反相放大器而言,信號從反相輸入端進入,則同相端即為接地端。由接地回路的不同,甚至也可以判斷放大器類型為同相放大器亦或反相放大器。
如果有兩路輸入信號,分別從兩個輸入端同時輸入,即雙端輸入,單端輸出的工作模式,即為差分放大器(亦名減法器)。
圖1 差分放大器的基本電路形式
差分放大器,據從輸入、輸出方式的不同,可分為雙端輸入、雙端輸出;雙端輸入、單端輸出;單端輸入、雙端輸出,單端輸入、單端輸出等多種電路形式,其中就運放器件電路構成的差分放大器而言,雙端輸入、單端輸出的電路形式應用廣泛。
差分放大器的電路優點:放大差模信號抑制共模信號,在抗干擾性能上有“過人之處”,這與其電路結構是分不開的。可以用兩只三極管電路搭建一個如圖1中的a電路,說明差分放大器的電路特性。
(1)對單電源供電的放大器電路,其輸出端(即Q1\Q2的C極)靜態工作點為1/2Vcc最為適宜,能保障其最大動態輸出范圍。只要RC1、RB1等偏置元件取值合適,則可使UC1、UC2的靜態電壓為2.5V,即靜態差分輸出電壓2.5V-2.5V=0V;
(2)電路設計盡可能使Q1、Q2的靜態工作參數一致,二者構成“鏡像”電路,RE為電流負反饋電阻,其直流電阻小,動態電阻極大(流過的電流近乎恒定),以提升電路的差分性能。
(3)當IN+=IN-時,或者二者信號電壓同步升降時,OUT+、OUT-端電壓也在同步升降,且升、降幅度相等,其輸差分輸出值仍會為0V。如二路輸入信號在靜態基礎上產生了Q1、Q2基極電流的同樣增量,則集電極電壓會產生下降,如由2.5V降低為1.5V時,則UC1-UC2=1.5V-1.5V=0V,這說明電路對共模輸入信號不予理會,具備優良的抗干擾性能。
眾所周知,RS485通訊電路,就是利用差分總線傳輸方式,產生了強有力的抗干擾效果。
(4)當IN+、IN-輸入信號在靜態基礎上有相對變化,即IN+-IN-≠0時,如IN+輸入電壓往正方向變化時,OUT-會往負方向變化(同時OUT+會往正方向變化),使得兩個輸出端反向偏離2.5V產生了信號輸出。當OUT-為1.5V,OUT+為3.5V時,此時使產生了2V的信號電壓輸出。
說明電路對差模信號進行了有效放大。差分放大器是有選擇性的放大器,忽略共模干擾,放大有用信號。
圖1中的b電路,是用運放器件構成的差分放大器。圖中明顯看到,無論輸入信號是2.5V或5V,只要IN1=IN2,OUT端即是0V。從此角度和意義上來講,當差分放大器的偏置元件R1=R3,R2=R4時,并且IN1=IN2時,其輸出端是“虛地”的。
雙端輸入、單端輸出差分放器的輸出端為何會呈現“虛地”特性呢?
圖2 差分放大器工作狀態圖
上圖a電路,是輸入信號IN1=IN2的狀態。
(1)因輸入端的“虛斷”特性,同相輸入端為高阻態,其輸入電壓值僅僅取決于R1、R2分壓值,為2V。同相輸入端的2V電壓可以看作成為輸入端比較基準電壓;
(2)因兩輸入端的“虛短”特性,可進而推知其反相輸入端,即R3、R4串聯分壓電路,其b點=a點=2V。這是反饋電壓。放大器的控制目的是使反饋電壓等于基準電壓;
(3)由R1=R3,R2=R4條件可知,放大器輸出端只有處于“虛地”狀態,即輸出端為0V,才能滿足b點=a點=2V,這可以由此導出差分放大器的一個工作特征。
上圖b中的(1)電路,是IN1》IN2的狀態。
(1)此時因同相輸入端電壓高于反相輸入端,輸出端電壓往正方向變化,其R3、R4偏置電路中的電流方向如圖所示;
(2)由R3、R4的阻值比例可知,R3兩端電壓降為(2.8V-1.5V)/10k,則R4兩端電壓降為1.3V×4=5.2V,輸出端電壓為2.8V+5.2V=8V。
(4)此時的輸入電壓差為IN1-IN=2V,輸出電壓為8V。顯然,該差分放大器的差分電壓放大倍數=R4/R3 是4倍壓差分放大器。由此可以推知差分放大器的差分輸入放大倍數為 (1N1-IN2) ×R4/R3 =-OUT
上圖b中的(2)電路,是IN1《IN2的狀態。
此時因反同相輸入端電壓高于同相輸入端,輸出端電壓往負方向變化,其R3、R4偏置電路中的電流方向如圖所示。同樣,依R3、R4的阻值比例可推知,在此輸入條件下,輸出端電壓為-8V,電路依然將輸入差分信號放大了4倍。
從電路的工作(故障)狀態判斷來說,直接測量R3、R4串聯電路的分壓狀態,只要R3、R4串聯分壓是成立的,則電路就大致上(起碼運放芯片)就是好的;電路的電壓放大倍數也由此得出;只要測量輸入電壓差(R1、R3左端電壓差),再測量輸出端電壓進行比較,則外圍偏置電路的好壞,也會得出明確的結論。
差分放大器的應用
差分運算放大電路,對共模信號得到有效抑制,而只對差分信號進行放大,因而得到廣泛的應用。
目標處理電壓:是采集處理電壓,比如在系統中像母線電壓的采集處理,還有像交流電壓的采集處理等。
差分同相/反相分壓電阻:為了得到適合運放處理的電壓,需要將高壓信號進行分壓處理,如圖中V1與V2兩端的電壓經過分壓處理,最終得到適合運放處理的電壓Vin+與Vin-。
評論
查看更多