3)變頻器以太網接口電路的硬件設計
從硬件的角度看,以太網接口電路主要由MAC控制器和物理層接口(PHY)兩大部分構成,目前常見的以太網接口芯片,如RTL8019, RTL8029, RTL8039, CS8900等,其內部結構也主要包含這兩部分。本文在設計以太網接口電路時,采用RTL8019AS作為以太網接口芯片,接口電路的電路圖如圖4所示,其中FC-518LS是網絡隔離變壓器。
前面講過變頻器控制電路的設計,其中實現(xiàn)整個系統(tǒng)控制功能的是微處理器LPC2292。由圖4可以看到,實現(xiàn)此變頻器的以太網接口功能,采用的微處理器仍然是LPC2292。那么也就是說,LPC2292除了實現(xiàn)SVPWM波形的產生以外,還要負責與外界網絡的數(shù)據(jù)交換。LPC2292采用PHILIPS LPC2292微處理器,可實現(xiàn)高達60MHz工作頻率,片內晶體振蕩器和片內PLL。LPC2292是一款基于16/32位ARM7TDMI-S,并支持實時仿真和跟蹤的CPU,并帶有256 k字節(jié)(kB)嵌入的高速Flash存儲器。128位寬度的存儲器接口和獨特的加速結構使32位代碼能夠在最大時鐘速率下運行。對代碼規(guī)模有嚴格控制的應用可使用16位Thumb模式將代碼規(guī)模降低超過30%,而性能的損失卻很小。 LPC2292采用144腳封裝、極低的功耗、多個32位定時器、8路10位ADC、2路高級CAN通道、PWM輸出以及多達9個的外部中斷,這款微控制器特別適合自動化、工業(yè)控制、汽車、醫(yī)療系統(tǒng)、訪問控制和故障容限維護總線等應用領域。其內部可用GPIOs范圍為76腳(外部存儲區(qū))到112腳(單片)。由于內置了寬范圍的串行通信接口,它們也非常適合于通信網關、協(xié)議轉換器、嵌入式軟件調制解調器以及其它各種類型的應用。
圖4以太網接口電路圖
6n138應用電路圖(二)
數(shù)字控制變頻器系統(tǒng)主要由主電路和控制電路組成,主電路采用典型的電壓型交-直-交通用變頻器結構;控制電路主要包括DSP數(shù)字控制器,由DSP、驅動電路、檢測電路、保護電路以及輔助電源電路組成。主電路和控制電路原理系統(tǒng)結構框圖如圖1所示。
圖1 系統(tǒng)結構框圖
主電路設計
數(shù)字控制變頻器主電路的原理結構圖如圖2所示,由濾波、整流、中間濾波、泵升吸收和逆變部分組成。輸入功率級采用三相橋式不可控全波整流電路,整流輸出經過中間環(huán)節(jié)大電容濾波,獲得平滑的直流電壓。逆變部分通過功率管的導通和關斷,輸出交變的脈沖電壓序列。
整流電路將交流動力電變?yōu)橹绷麟?,本系統(tǒng)采用不可控全波整流模塊6RI75G-120。為防止電網或逆變器等產生的尖峰電壓對整流電路的沖擊,在直流輸出側并聯(lián)了一個可吸收高頻電壓的聚脂乙烯電容C4,取值為0.22 μF。整流電路輸出的直流電壓含有脈動成分,逆變部分產生的脈動電流及負載變化也為直流電壓脈動,由C1、C2濾波,取值為450 V、470 μF;R2、R3為均壓電阻,取值為5 W、100 kΩ;R1為充電限流電阻。啟動變頻器后經1 s~2 s,由J2繼電器短路,以減少變頻器正常工作時在中間直流環(huán)節(jié)上的功耗。逆變部分電路采用EUPEC的FF300R12KE3集成模塊,其內部集成了2個IGBT單元,比較適合變頻逆變驅動,其具體極限參數(shù):集射極電壓VCES=1 200 V ,結溫80 ℃時集射極電流ICE=300 A,結溫25 ℃時集射極電流ICE=480 A,允許過流600 A,時間為1 ms,功率損耗為1 450 W,門極驅動電壓為±20 V。
如圖2所示,TL、RL構成泵升電壓吸收電路,當電機負載進入制動狀態(tài)時,反饋電流將向中間直流回路電容充電,導致直流電壓上升。當直流電壓上升到一定值時,控制TL導通,使這部分能量消耗在電阻RL上,確保變頻器可靠安全地工作。此外,由J1常閉觸點與R4組成斷電能量釋放電路。當系統(tǒng)發(fā)生故障或關機時,繼電器J1斷電,通過其常開觸點,將變頻器與電網斷開;而常閉觸點閉合,利用R4為中間回路大電容所儲存的能量提高釋放通道。
圖2 主電路原理結構圖
以TMS320F2812為核心的數(shù)字控制電路如圖3所示。從圖中可以看出,控制系統(tǒng)主要包括:DSP及其外圍電路、信號檢測與調理電路、驅動電路和保護電路。其中,信號檢測與調理電路主要完成對圖2輸出電流和輸出電壓采樣、A/D等功能,DSP產生脈沖信號,通過D/A轉換后驅動功率開關管U1~U6。
圖3 變頻器數(shù)字控制系統(tǒng)框圖
TMS320LF240片內集成了采樣保持電路和模擬多路轉換器的雙十位A/D轉換,為了盡量充分利用芯片資源,采用了片內A/D轉換進行設計。使用雙減法電流[6]采樣電路,采樣方案中的運算放大器是TLC2274。第一運放U8A的輸出電壓為:
其中R1=R2,R3=Rn,則:
同樣,第二運放U8A的輸出電壓為:
從霍爾電流傳感器輸出的Ui=2.5±△V,此電壓先后施加到由TLC2274構成的兩個減法電路上,第一路以Ui減去傳感器采樣結果的中值參考電壓Uref(2.5V),然后再線性放大到A/D采樣所要求的電壓范圍;第二路則相反,再中值參考電壓Uref減去傳感器輸出電壓Ui,同樣也線性放大到合適的電壓范圍。Z1、Z2為兩個3.3V的穩(wěn)壓二極管,對運放輸出電壓起到限幅作用。當Ui值》Uref時,Uo1輸出為正電壓,且電壓范圍是0-3.3V,而由于二極管D2的存在使得電流不能注入到運放中,故而第二路運放不能輸出負電壓,而是鉗位在0V;當Ui值《Uref時,Uo2輸出為正電壓?,F(xiàn)樣由于二極管D1在存在使得第一路運放不能輸出負電壓,也是鉗位在0V。在一個正弦波周期內的某一時刻只會有一路信號輸出,這比常規(guī)方法采樣窗口要寬一倍,從而提高了采樣精度。
由于電機啟動時的電流非常大或因控制回路、驅動電路等誤動作,造成輸出電路短路等故障,導致過大的電流流過IGBT,且電流變化非常快,元件承受高電壓、大電流,因此需要一種能快速檢測出過大電流的電路??梢圆捎?SD315A自身檢測和檢測直流母線的雙重檢測以及在故障發(fā)生時,采用軟、硬件同時封鎖的方法。直流母線電壓的變化,對整個逆變系統(tǒng)有較大的影響。當母線電壓過低,電網輸出不能達到系統(tǒng)要求時,需要盡快切斷電源,防止對電機或者逆變系統(tǒng)造成破壞;相反,母線電壓過高,很容易使功率驅動管燒毀。為有效地保護功率IGBT和直流濾波電容,系統(tǒng)設計了母線電壓過欠壓保護電路,故障檢測原理如圖4所示。圖中6N138為一個線性光電隔離器,輸出電壓信號與母線電壓成正比,當通過光電隔離器件后,可以直接供給DSP控制系統(tǒng)進行采樣。同時,將輸出Vlimit信號送至DSP,觸發(fā)中斷保護。
圖4 故障檢測原理圖
評論
查看更多