最簡單的短路保護電路圖(五)
在某些直流/直流轉換器中,芯片上的逐周期限流措施在短路期間可能不足以防止故障發生。一個非同步升壓轉換器可通過電感器和箝位二極管來提供一條從輸入端到短路處的直接通路。當負載存在短路時,不管集成電路中限流保護功能如何,流過負載通路的極大電流可能會損壞箝位二極管、電感器和集成電路。在一個 SEPIC(單端初級電感變換器)電路中,耦合電容會中斷這條道路。因此,當負載存在短路時,也就不存在電流從輸入端流到輸出端的直接通路。但是,如果所要求的最短導通時間比專用負載周期還短,則電感器電流和開關電流就會迅速增大,造成集成電路故障、輸入端過載,或兩種情況兼而有之。甚至在某些降壓穩壓器中,負載周期的種種限制有時也會使開關導通時間過長,以致無法在輸出短路時保持控制,特別是在極高頻率集成電路的輸入電壓非常高的時候。使用單個晶體管方法,可以在負載過載或短路致使電感電流開始失控時,將 VC 腳(誤差放大器的輸出端)電壓下拉,這樣就可以防止 SEPIC 電路發生短路故障(圖 1)。
下拉 VC 引腳電壓可迫使集成電路停止開關功能,跳過最短導通時間開關周期,使每個電感器中的電流下降。在短路期間,L1 中的峰值電流(因開關周期數有限而降低)與 L2 中的峰值電流之和等于開關的峰值電流,即低于 LT1961EMS8E 的1.5A 極限值。
最簡單的短路保護電路圖(六)
高可靠性短路保護電路的實現電路如圖1所示,其中VMP是線性穩壓器的功率MOS管,R1、R2為穩壓器的反饋電阻;VMO和VMP管是電流鏡電路,VMO管以一定的比例復制功率管的電流,通過電阻R4轉化為檢測電壓;晶體管VM1完成電平移位功能,最后接入由VM8~VM12等MOS管組成的比較器的正輸入端(Vinp),比較器的負輸入端(Vinm)與輸出端(0UT)相連;VM13、VM14組成二極管連接形式為負載的共源級放大電路;VM14和VMp1構成電流鏡電路;晶體管VMp1完成對功率管VMP的開關控制,正常工作時,VMp1的柵級電位(Vcon)為高電平,不會影響系統的正常工作,短路發生時,Vcon將為低電平,使功率管關斷。
工作原理的定性分析
當短路發生時,比較器的負輸入端電位(Vinm)為0 V;同時VM1管將導通,因此比較器的正輸入端電位大于0 V,最終比較器的輸出節點電位(Vcom)為高電平,在MOS管VM13、VM14作用下,控制信號Vcon將為低電平,最終VMP管的柵極電壓將升高,進而關斷P功率管,實現短路保護。
實現短路保護后,VM1管將關斷;VM3和VM4組成電流鏡,晶體管VM2的作用是保證電路在短路期間(VM1管關斷),比較器正輸入端的電壓始終高于比較器的負輸入端電壓(即使系統存在地平面噪聲),從而使Vcon電壓始終為低電平,確保電路在短路發生期間始終都能關斷P功率管,實現保護電路的高可靠性。
同時當短路發生時(即Vcon信號為低電平),VM7管正常工作,VM5管將導通,有一定的電流流向0UT端;因此一旦短路消除(即0UT端接有負載電阻),VM5管將對負載電容和負載電阻組成的并聯RC網絡充電,0UT端電壓升高,Vcon信號將變為高電平,電路自動恢復正常狀態。
評論