抑制零點漂移的措施具體有以下幾種:
(1)選用高質量的硅管硅管的ICBO要比鍺管小好幾個數量級,因此目前高質量的直流放大電路幾乎都采用硅管。另外晶體管的制造工藝也很重要,即使是同一種類型的晶體管,如工藝不夠嚴格,半導體表面不干凈,將會使漂移程度增加。所以必須嚴格挑選合格的半導體器件。
(2)在電路中引入直流負反饋,穩定靜態工作點。
(3)采用溫度補償的方法,利用熱敏元件來抵消放大管的變化。補償是指用另外一個元器件的漂移來抵消放大電路的漂移,如果參數配合得當,就能把漂移抑制在較低的限度之內。在分立元件組成的電路中常用二極管補償方式來穩定靜態工作點。此方法簡單實用,但效果不盡理想,適用于對溫漂要求不高的電路。
(4)采用調制手段,調制是指將直流變化量轉換為其他形式的變化量(如正弦波幅度的變化),并通過漂移很小的阻容耦合電路放大,再設法將放大了的信號還原為直流成份的變化。這種方式電路結構復雜、成本高、頻率特性差。實現這種方法成本投入較高。
(5)受溫度補償法的啟發,人們利用2只型號和特性都相同的晶體管來進行補償,收到了較好的抑制零點漂移的效果,這就是差動放大電路。在集成電路內部應用最廣的單元電路就是基于參數補償原理構成的差動式放大電路。在直接耦合放大電路中,抑制零點漂移最有效地方法是采用差動式放大電路。
4.1 差動放大電路抑制零點漂移的原理
差動放大電路又叫差分電路,他不僅能有效地放大直流信號,而且還能有效的減小由于電源波動和晶體管隨溫度變化而引起的零點漂移,因而獲得廣泛的應用,特別是大量地應用于集成運放電路,其常被用作多級放大器的前置級。
基本差動式放大器如圖3所示。圖中VT1,VT2是特性相同的晶體管,電路對稱,參數也對稱。如:VBE1=VBE2,RCl=RC2=RC,Bl=RB2=RB,β1=β2=β。電路有2個輸入端和2個輸出端。因左右2個放大電路完全對稱,所以在沒有信號情況下,即輸入信號UI=0時,Uo1=Uo2,因此輸出電壓Uo=0,即表明差分放大器具有零輸入時零輸出的特點。當溫度變化時,左右兩個管子的輸出電壓Uo1,Uo2都要發生變動,但由于電路對稱,兩管的輸出變化量(即每管的零漂)相同,即△Uo1=△Uo2,則Uo=O,可見利用兩管的零漂在輸出端相抵消,從而有效地抑制了零點漂移。如圖3所示的差動放大電路所以能抑制零點漂移,是由于電路的對稱性。但是此電路存在缺陷:完全對稱的理想情況并不存在;所以單靠提高電路的對稱性來抑制零點漂移是有限度的。上述差動電路的每個管的集電極電位的漂移并末受到抑制,如果采用單端輸出(輸出電壓從一個管的集電極與“地”之間取出),漂移根本無法抑制。為此,常采用圖4所示的典型差動放大電路。
?
?
?
4.2 典型差動放大電路結構及抑制零點漂移的原理
典型差動放大電路如圖4所示,與最簡單的差動放大電路相比,該電路增加了調零電位器RP、發射極公共電阻RE和負電源UEE。下面分析電路抑制零點漂移的原理、發射極公共電阻RE(可以認為調零電位器RP是RE的一部分)和負電源EE的作用。電路中RE的主要作用是穩定電路的靜態工作點,從而限制每個管子的漂移范圍,進一步減小零點漂移。例如當溫度升高使IC1和IC2均增加時,則有如圖5的抑制漂移的過程。可見,由于RE的電流負反饋作用,其結果使集電極電位基本不變,減小了輸出端的漂移量。反饋電阻RE可以抑制共模信號,對差模信號不起作用。零點漂移屬于共模信號,所以使每個管子的漂移又得到了一定程度的抑制。顯然,RE的阻值取得大些,電流負反饋作用就強些,穩流效果會更好些,因而抑制每個管子的漂移作用就愈顯著。
射極負電源UEE的作用:由于各種原因引起兩管的集電極電流、集電極電位產生同相的漂移時(如:2個輸入信號都含有共模信號分量或50 Hz交流的共模干擾信號等),那么RE對它們都具有電流負反饋作用,使每管的漂移都受到了削弱,這樣就進一步增強了差動電路抑制漂移和抑制相位相同信號的能力。雖然,RE愈大,抑制零點漂移的作用愈顯著;但是,在UCC一定時,過大的RE會使集電極電流過小,會影響靜態工作點和電壓放大倍數。為此,接入負電源UEE來抵償RE兩端的直流壓降,則發射極點位近似為零,獲得合適的靜態工作點。電阻RP的作用:電位器RP是調平衡用的,又稱調零電位器。因為電路不會完全對稱,當輸入電壓為零(將兩輸入端都接“地”)時,輸出電壓不一定等于零。這時可以通過調節RP來改變兩管的初始工作狀態,從而使輸出電壓為零。但RP對相位相反的信號將起負反饋作用,因此阻值不宜過大,一般RP值取在幾十歐姆到幾百歐姆之間。
5 結語
由以上分析可知,典型差動放大電路既可利用電路的對稱性、采用雙端輸出的方式抑制零點漂移;又可利用發射極公共電阻RE的作用抑制每個三極管的零點漂移、穩定靜態工作點。因此,這種典型差動放大電路即使是采用單端輸出,其零點漂移也能得到有效地抑制。所以這種電路得到了廣泛的應用。
?
評論
查看更多