色哟哟视频在线观看-色哟哟视频在线-色哟哟欧美15最新在线-色哟哟免费在线观看-国产l精品国产亚洲区在线观看-国产l精品国产亚洲区久久

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>智能電網>尖峰電流的形成

尖峰電流的形成

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

抑制IGBT集電極過壓尖峰的方法

IGBT關斷時,集電極電流Ic迅速減小到0,急劇變化的di/dt流經在系統雜散電感,產生感應電壓ΔV。ΔV疊加在母線電壓上,使IGBT承受高于平常的電壓應力。哪怕這電壓尖峰時間很短,也可能對IGBT
2022-08-23 11:02:045423

半橋LLC電路中功率管驅動的尖峰

如圖19所示,當上管關斷后,在上管的驅動Vg1上出現一個電壓尖峰,當死區時間減少,下管ZVS開通不完全時,這個電壓尖峰會更大,從圖20可以看出這個尖峰出現的時刻和Vds1下降的時間是吻合的。
2023-03-23 09:39:524054

詳解PWM開關穩壓電源尖峰干擾

的正常波形、形成干擾。##為減小輸出線上的損耗和尖峰干擾,輸出到負載的連線應短。圖6畫出了對三種不同長度的輸出線,當負載電流為8A時,在負載端所測得的干擾波形。輸出線長,尖峰干擾的幅度大、寬度也寬。相同長度的輸出線,線徑粗則尖峰干擾幅度大、寬度寬。
2015-02-13 16:25:4610664

理解尖峰電流與pcb布局時的去耦電容

尖峰電流形成: 數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成: 輸出電壓如右
2018-01-12 09:05:206952

反激開關MOSFET源極流出的電流精細剖析

大家都知道這個尖峰是開關MOS開通的時候出現的,根據反激回路,Ids電流環為Vbus經變壓器原邊、然后經過MOS再到Vbus形成回路。
2018-01-25 09:23:5612309

如何應對輸入端負壓 驅動輸入端負壓尖峰形成原因

由于開關電源經常需要硬開關驅動大功率負載,在硬開關以及布局限制的情況下,功率MOSFET往往會對驅動芯片的輸入和輸出端形成較大的地彈電壓和振蕩尖峰電壓。
2021-03-15 10:26:199793

反激電源尖峰電壓和特點 RCD回路吸收鉗位的工作原理

尖峰電壓,截止時產生的尖峰電壓是由電路中的儲能元件釋放的電流引起的突變,過高的尖峰電壓會影響開關管的正常工作,需要對尖峰電壓采取措施抑制尖峰電壓。
2022-08-05 17:48:558094

CCM下的FLYBACK電源拓撲開關尖峰形成過程

FLYBACK(反激變換器)的開關功率管在開通和關斷時刻形成的電壓震蕩尖峰電流震蕩尖峰是開關電源中的主要干擾源,對開關電源的傳導干擾和輻射干擾起著決定性的作用,本文對CCM條件下的開關尖峰形成過程進行說明。
2023-09-07 14:33:57868

mos管尖峰電壓如何消除

尖峰電壓(或電壓峰值)是指在電氣系統中突然出現的瞬態過電壓,其峰值大于正常工作電壓的兩倍以上。尖峰電壓是由于閘刀分合、電弧熄滅、電動機負載突然切斷等原因造成的,可能給電氣設備和系統帶來損壞和故障
2023-12-08 10:25:542210

10種有效方法抑制副邊整流二極管的尖峰

電流容量,可相對減小反向恢復時的關斷時間,限制反向短路電流的數值,可抑制電流尖峰和降低導通損耗。4盡量使元件布局走線合理 ,減小大電流回路的面積,對EMI的抑制也比較有效。后沿尖峰的抑制方法5選用開關
2017-09-12 17:56:16

尖峰電流形成,產生尖峰電流的主要原因

尖峰電流形成產生尖峰電流的主要原因尖峰電流的抑制方法
2021-03-16 11:57:18

BOOST啟動瞬間電感存在尖峰電流

,頻率71kHZ,負載130W,啟動瞬間電流存在一個尖峰尖峰是怎樣產生的?有什么解決辦法?2、電感平均電流4.3A,開機瞬間存在50A左右的電流尖峰。第一次開機時電流尖峰(功率圖中的SC1傳感器測得)關機后,緊接著的二次開機時電流尖峰(功率圖中的SC1傳感器測得)3、原理圖控制部分功率部分
2021-09-26 16:57:17

IGBT柵極電壓尖峰分析

的IGBT門極開通電壓尖峰是怎么回事? 圖1a IGBT門極開通尖峰 圖1b IGBT門極開通尖峰機理分析:IGBT門極驅動的等效電路如圖2所示: 圖2. IGBT驅動等效電路IGBT開通瞬間門極驅動回路
2021-04-26 21:33:10

PCB設計技巧Tips7:印制電路板的可靠性設計-去耦電容配置

在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生
2014-11-19 11:26:03

一文解答如何抑制整流二極管的尖峰

吸收回路可進一步減小前沿尖峰的幅值,降低二極管恢復過程中的振蕩頻率。3、多個整流二極管并聯;適當增大整流二極管的電流容量,可相對減小反向恢復時的關斷時間,限制反向短路電流的數值,可抑制電流尖峰和降低導
2019-03-10 06:30:00

兩種常見電容在開關三極管電路中的作用

電容。不論所用集成電路器件有多少,每個印刷板都要至少加一套旁路電容。 去耦電容能夠對負載變化所產生的噪聲進行抑制,如電路進行狀態的轉換時,就容易產生這種情況,在電源線上產生一個很大的尖峰電流形成瞬變
2016-01-21 09:36:35

產生尖峰電流的主要原因及抑制方法

尖峰電流形成: 數字電路輸出高電平時從電源拉出的電流 Ioh 和低電平輸出時灌入的電流 Iol 的大小一般是不同的,即:Iol>Ioh。以下圖的 TTL 與非門為例說明尖峰電流形成:輸出電壓如右
2021-01-26 07:00:00

從cypress控制器的DAC生成電流信號時出現尖峰是為什么?如何刪除?

我正在將一個電阻器連接到 DAC 輸出,然后向它發出 1 khz 頻率和 5 微安培的正弦波電流信號,持續 10 次。 每次我發出這個信號 1 秒 我首先開始生成信號,在此持續1秒鐘然后停止信號
2024-01-24 07:51:45

從芯片內部的角度分析理解去耦電容的作用

尖峰電流形成:數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成:輸出電壓如右圖(a)所示
2016-08-27 11:11:57

全橋逆變器 母線電壓出現尖峰脈沖 干擾電流信號采集

全橋逆變電路,電路基本拓撲結構和圖1一樣,還加了負載測電流檢測電路和母線電壓檢測電路。通過DSP的adc管腳讀取電流信號結果如圖2,發現一個周期內出現四個尖峰。 圖2通過示波器排查噪聲源來自母線
2022-02-12 20:04:43

關于電流表前級采樣有尖峰如何濾波

[tr=transparent]我用單片機做了一個電流表,電流表前期用的LM358放大,但是前級采樣的輸入負載引起有尖峰,實際電壓130毫伏,但是尖峰電壓就有10V了。導致電流表顯示亂跳,。這該如何解決[/tr]
2018-04-10 19:53:47

單片機休眠和喚醒運行切換時會產生尖峰電流怎么消除?

單片機休眠和喚醒運行切換時會產生尖峰電流,怎么消除?
2023-10-30 07:17:56

印制線路板

印制電路板的可靠性設計-去耦電容配置 在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置
2015-05-09 09:18:36

反激開關MOSFET源極流出的電流精細剖析

Vin對雜散電容Cp充電,其兩端電壓為上正下負,形成流經開關管和Vin的電流尖峰;同時Cds電容對開關管放電,也形成電流尖峰,但是此尖峰電流不流經Vin,只在開關管內部形成回路;另外,如果變換器工作在
2018-10-10 20:44:59

反激式電源同步整流尖峰很高,有什么方法可以有效改善那個反向尖峰嗎?

的反向尖峰如下圖: 問題來了: 輸入110VAC的時候,同步整流管的反向尖峰Vpp有80V,去掉那個尖峰剩下54V; 2.輸入220VAC的時候,同步整流管的反向尖峰Vpp有120V(這個尖峰電壓已經
2023-07-31 10:30:42

在做LLC諧振變換器調試時,諧振電流的波形有很大的尖峰是什么原因?

在做LLC諧振變換器調試,諧振電流的波形有很大的尖峰,在MOS管開關動作時出現。這是第二輪調試,同樣的電路和器件,就是重新布了一下板子,求搞過LLC的幫忙分析下,謝謝!
2023-07-31 17:14:31

在設計PCB的時候如何抑制反射干擾?

的最大值來決定。  1、去耦電容配置  在直流電源回路中,負載的變化會引起電源噪聲。舉個例子,在數字電路中,當電路從一個狀態轉換成另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓
2023-04-10 15:09:04

怎么理解當電源(VDD) 到地( GND) 的支路為低阻通路時,支路中形成穩定的電流

在資料上看到這句話:“當電源(VDD) 到地( GND) 的支路為低阻通路時,支路中形成穩定的電流”,怎么理解?謝謝!
2021-06-24 07:38:10

抑制尖峰電流的N種方式,看看工程師是如何選擇的?

尖峰電流形成:數字電路輸出高電平時從電源拉出的電流 Ioh 和低電平輸出時灌入的電流 Iol 的大小一般是不同的,即:Iol》Ioh。以下圖的 TTL 與非門為例說明尖峰電流形成:圖 1 TTL
2020-02-11 07:00:00

整流二極管的尖峰抑制的10種方法

電流容量,可相對減小反向恢復時的關斷時間,限制反向短路電流的數值,可抑制電流尖峰和降低導通損耗。4盡量使元件布局走線合理 ,減小大電流回路的面積,對EMI的抑制也比較有效。后沿尖峰的抑制方法5選用開關
2019-05-13 05:57:38

整流二極管的尖峰抑制的10種方法介紹

選用對高頻振蕩呈高阻抗衰減特性的鐵氧體材料,等。2在二次側接入RC吸收回路可進一步減小前沿尖峰的幅值,降低二極管恢復過程中的振蕩頻率。3多個整流二極管并聯;適當增大整流二極管的電流容量,可相對減小
2019-04-08 08:30:00

求助!我想問下,為什么電流表并沒有形成回路,它怎么也有示數呢?

我想問下,為什么電流表并沒有形成回路,它怎么也有示數呢?
2017-06-18 10:28:38

消除電壓尖峰

VBAT是接電池,上電的瞬間,會產生一個電壓尖峰,可能會燒壞U11,應該怎么降低或者消除這個電壓尖峰
2016-12-13 15:29:23

理解MOSFET的VTH:柵極感應電壓尖峰,會導致直通損壞嗎?

在250uA的時,測量閾值電壓,這個電流表明源極和漏極間剛剛形成導通的溝道,而不是MOSFET完全導通的狀態,這和許多工程師所認識的VGS到了VTH后MOSFET就完全導通的觀點并不相同。圖2:VTH
2016-11-08 17:14:57

電壓模式輸出電容ESR取樣形成平均電流模式

電壓模式輸出電容ESR取樣形成平均電流模式電壓模式中輸入電壓前饋引入電流模式
2021-03-04 07:07:40

電機電流的互感器應該如何選擇?

項目中需要使用電流互感器,95kw的電機額定電流在190A左右。 看到有些人選型中直接選擇了250A的互感器,這樣是不是有問題 如果要監控尖峰電流的話,是不是就檢測不到。 電流表是不是應該按照尖峰電流來選擇呢,還是比額定電流大就行。 大家是怎么選的?稍微有點困惑。
2024-01-10 06:23:14

電源去耦設計原因

2019.7.6 電源去耦設計原因:在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉變為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置去
2021-12-31 08:05:14

電路漏電流形成及預防知識

電路漏電流形成及預防知識 介紹了印制電路板漏電流形成及影響,對不同環境條件下的印制板印制線間絕緣電阻進行了測試,得出了電路漏電流的控制方法,為可能出現的因電路漏電流導致的故障分析
2009-12-23 16:22:21

知識普及:為什么數字電路會產生尖峰電流

尖峰電流形成:輸出電壓如右圖(a)所示,理論上電源電流的波形如右圖(b),而實際的電源電流保險如右圖(c)。由圖(c)可以看出在輸出由低電平轉換到高電平時電源電流有一個短暫而幅度很大的尖峰尖峰
2020-07-07 07:00:00

詳解PWM開關穩壓電源尖峰干擾

得到了廣泛的應用。但是,開關三極管的工作狀態轉換持續期短、頻譜甚寬的尖峰干擾是其致命弱點,它不僅影響開關電源本身,而且還會干擾鄰近的其它電子設備。  開關穩壓電源工作時開關三極管和續流二極管(亦可
2011-09-02 11:26:54

請問MPPT實驗產生電流尖峰的原因?

進行DCDC部分MPPT實驗時,設置的最大功率點處的電壓30v,電流1.2a,但實驗中一直有電流尖峰出現,導致系統不穩定,而且尖峰值一旦到達程序中設定的最大電流值,電路即過流保護斷開。但是不明白這個電流尖峰是哪里引發的???謝謝大家的解答!!附件中為傳感器波形。下圖是觸發過流保護瞬間的截圖。
2020-07-24 16:39:20

集電極電流Ic是如何形成的?

三極管的原理光敏二極管的原理集電極電流Ic的形成
2021-03-10 07:36:40

PN結的形成及特性ppt

PN結的形成及特性一、 PN結的形成 二、 PN結的單向導電性 三、 PN結的電流方程 四、 PN結的伏安特性 五、 PN結的電容效應
2008-07-14 14:09:290

開關電源尖峰吸收電路

因為開關電源中存在電容、電感儲能性元件,調整管在關斷的瞬間會有很高的關斷尖峰,即調整管中電流變化率di/dt及調整管上的電壓變化率du/dt而產生的瞬態過電流和瞬態過電壓所
2009-10-31 09:19:38140

開關電源的尖峰干擾及其抑制

介紹幾種抑制尖峰干擾的方法。通過產品試用表明,該方法有一定的實用性。
2009-11-28 10:58:4251

電流形成(電流教學視頻免費教程)

本視頻演示講解了電流是怎樣形成的,講解了金屬導體中電流形成,課件還展示了水流的形成,將電流形成和水流的形成相對比,展示了電流形成條件等。視頻清晰、形象,
2010-08-10 18:52:19135

BUCK變換中的尖峰問題

BucK變換器在開關轉換瞬間.由于線路上存在感抗,會在主功率管和二極管上產生電壓尖峰,使之承受較大的電壓應力和電流沖擊,從而導致器件熱損壞及電擊穿 因此,為避
2010-11-11 15:48:4761

抑制尖峰干擾的分頻器電路圖

抑制尖峰干擾的分頻器電路圖
2009-03-29 09:57:261170

開關電源的尖峰干擾及其抑制

開關電源的尖峰干擾及其抑制 摘要:介紹幾種抑制尖峰干擾的方法。通過產品試用表明,該方法有一定的實用性。 關鍵詞:紋波濾波器二極管抑制 Th
2009-07-11 08:35:451448

隔行掃描光柵的形成過程及其掃描電流的波形

隔行掃描光柵的形成過程及其掃描電流的波形
2009-07-31 11:58:541301

Flyback的次級側整流二極管的RC尖峰吸收問題

  在討論Flyback的次級側整流二極管的RC尖峰吸收問題,在處理此類尖峰問題上此處用RCD吸收會比用RC 吸收效果更好,用RCD吸收,其整流管尖峰電壓可以壓得更低(合理的參數搭配
2010-09-07 10:49:545431

BUCK變換器中的電壓尖峰問題

BUCK 變換器在開關轉換瞬間 由于線路上存在感抗 會在主功率管和二極管上產生電 壓尖峰 使之承受較大的電壓應力和電流沖擊 從而導致器件熱損壞及電擊穿。因此 為避免此現象 有必要對電壓尖峰的原因進行分析研究 找出有效的解決辦法。
2017-09-28 11:32:3234

大功率BUCK變換器電壓電流尖峰的分析及抑制措施

在大功率 Buck變換器中電路工作于高頻開關狀態由于實際線路的寄生參數和器件的非理 想特性的影響 開關器件兩端會出現過高的 電壓和電流尖峰嚴重地降低了電路的可靠性。本文詳細分析了兩種尖峰產生的原因
2017-09-28 11:29:3828

尖峰電流形成及抑制與去耦電容的作用解讀

電容的ESR和ESL是由電容的結構和所用的介質決定的,而不是電容量。通過使用更大容量的電容并不能提高抑制高頻干擾的能力,同類型的電容,在低于Fr的頻率下,大容量的比小容量的阻抗小,但如果頻率高于Fr,ESL決定了兩者的阻抗不會有什么區別。
2017-12-06 10:00:006487

詳解去耦電容的作用

數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成
2017-12-06 09:33:0216059

尖峰電流形成與抑制和PCB布局時去耦電容的擺放

數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成
2018-01-08 10:45:484384

動態尖峰電價及其博弈求解方法

激發需求響應資源參與電力系統調節對于提高系統運行可靠性和效率具有重要意義。尖峰電價是一種利用價格杠桿引導用戶合理改變用電行為,緩解尖峰時系統供需矛盾的有效激勵機制。結合當前中國電力市場發展情況,提出
2018-01-21 10:52:0614

隔離高電壓輸入浪涌和尖峰的方法

凌力爾特的浪涌抑制器產品通過采用 MOSFET 以隔離高電壓輸入浪涌和尖峰
2018-06-28 10:15:005038

變壓器原邊電流分解第一個原邊電流尖峰消除方案

變壓器原邊第一個電流尖峰該如何消除?
2018-09-06 11:42:329966

反激電源高壓MOS管尖峰電流的來源和減小方法

做電源的都測試過流過高壓MOS的電流波形,總會發現電流線性上升之前會冒出一個尖峰電流,并且有個時候甚至比正常的峰值電流還要高。看起來很不爽。那這尖峰怎么來的,如何減小它呢?
2019-02-17 09:15:4912036

分享各種電路板設計經驗

在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生的噪聲,是印制電路板的可靠性設計的一種常規做法。
2019-08-12 10:54:063764

PCB布局時去耦電容安裝在哪里比較好

尖峰電流形成是因為數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。
2019-08-26 10:15:16337

數字電路中尖峰電流形成原理解析

數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。
2019-11-06 16:47:438770

如何抑制電路設計時形成尖峰電流

數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol》Ioh。
2020-01-16 11:16:083986

印制電路板如何實現去耦電容配置的可靠性設計

在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置去耦電容可以抑制因負載變化而產生的噪聲,是印制電路板的可靠性設計的一種常規做法,配置原則如下:
2020-05-05 16:07:001929

模擬電路知識之電源退耦電路

在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉換為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。
2020-09-01 15:13:575764

去耦電容的作用是什么

來源:羅姆半導體社區 尖峰電流形成: 數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成
2023-02-02 11:35:26437

BUCK到底是怎么產生尖峰振蕩呢?

是什么情況? 2、上下尖峰振蕩是如何產生的?跟哪些因素有關? 理想的BUCK的SW波形 我們由淺入深,一步一步來,先看理想的開關SW波形—沒有尖峰電壓的波形。 為了能更好的看buck電路各個點的電壓電流情況,我選的電源芯片是沒有內部集成開關管的,使用的
2021-07-06 08:56:3318619

氫氟酸溶液中多孔硅的形成

引言 我們研究了四種硅在高頻水溶液中的陽極電流-電勢特性。根據不同電位陽極氧化的樣品的表面條件,電流-電位曲線上通常有三個區域:電流隨電位指數變化區域的多孔硅形成,恒流區域的硅的電泳拋光,以及
2021-12-28 16:40:16905

電源去耦

2019.7.6 電源去耦設計原因:在直流電源回路中,負載的變化會引起電源噪聲。例如在數字電路中,當電路從一個狀態轉變為另一種狀態時,就會在電源線上產生一個很大的尖峰電流形成瞬變的噪聲電壓。配置
2022-01-11 11:41:358

RCD尖峰吸收電路原理分析

R4電阻,D1二極管,C6電容是尖峰吸收電路,因為是電阻電容二極管組成的電路,簡稱RCD吸收回路。那么為什么要加尖峰吸收回路呢,是因為要保護MOS管過壓擊穿,把峰值電壓限制在MOS管耐壓之內。這樣MOS管就可以安全地工作了,那么它是如何工作的呢。
2022-11-23 09:30:4823378

反激變換器電流尖峰分析

最近分析下反激電流波形存在尖峰原因,并將相應分析過程記錄如下,歡迎大家討論。
2023-03-09 15:06:562561

開關管的電壓尖峰抑制方法(一)

上節我們講了開關管的電壓尖峰的產生原理,有的人會問我:為什么我們要關注電壓尖峰呢?我們不用電感不就行了?
2023-03-10 16:59:565917

開關管的電壓尖峰抑制方法(二)

上節我們認識了開關管的第一種電壓尖峰的抑制手段,就是利用TVS或者穩壓管工作時的電流再次對開關管的門極進行充電,讓開關管的門極的變化不在劇烈,因此能讓開關管的電壓尖峰抑制到合理的范圍。開關管還有其他的電壓尖峰抑制方式嗎?
2023-03-10 17:00:382527

半橋LLC電路中上管VDS的尖峰

我們發現,在模塊從空載到短路跳變,短路關機后到短路態的過程中,短路態到空載的過程中上管還是存在電壓尖峰,如圖32所示,而且這個尖峰無論是120nS還是190nS都存在,尖峰產生的具體原因不明,只能推測和功率管的反向恢復有關!
2023-03-24 11:07:122250

什么是尖峰電流

尖峰電流是指用電設備持續時間為1s左右的最大負荷電流。它用來計算電壓波動,選擇熔斷器和低壓斷路器,整定繼電保護裝置及檢驗電動機自起動條件等。
2023-04-21 14:46:443555

產生尖峰電流的主要原因

產生尖峰電流的另一個原因是負載電容的影響。與非門輸出端實際上存在負載電容 CL,當門的輸出由低轉換到高時,電源電壓由 T4 對電容 CL 充電,因此形成尖峰電流
2023-04-21 14:53:411764

尖峰電流的抑制方法

尖峰電流是指過電流峰值較高的短暫電流,通常由于整流電路、直流側電容充電時間過短、開關管失效等原因造成。尖峰電流長期存在對電路、開關元件和其他電力設備造成損壞,因此需要采取抑制尖峰電流的方法
2023-04-21 14:57:323319

尖峰電流的計算

尖峰電流的計算方法根據電路的類型和具體情況不同而有所不同。在直流電路中,尖峰電流的大小通常取決于電路中電源和電路內電子元件的電容性質以及電路的干擾情況,并可以通過以下公式進行計算
2023-04-21 15:01:353534

尖峰電流形成和抑制方法 PCB布局時去耦電容擺放方法

數字電路輸出高電平時從電源拉出的電流Ioh和低電平輸出時灌入的電流Iol的大小一般是不同的,即:Iol>Ioh。以下圖的TTL與非門為例說明尖峰電流形成
2023-08-14 11:52:12508

開關電源如何將紋波尖峰做小?

開關電源如何將紋波尖峰做小?? 開關電源是現代電子設備中最為常見的電源類型之一,其主要作用是將來自電源線的交流電轉換成為直流電,并且對電源輸出進行穩定化和保護。然而,在使用開關電源的過程中,我們
2023-08-18 10:53:48998

電流源與電阻串聯時為什么會形成恒流源?

電流源與電阻串聯時為什么會形成恒流源? 電流源和電阻串聯在電路中是非常常見的電路連接方式。當電流源被串聯在電阻上,會形成一個恒流源。這種電路連接方式具有很多優點,因此在實際電路中被廣泛應用。那么
2023-09-13 14:45:162545

反激電路尖峰可用什么電路吸收

反激電路尖峰可用什么電路吸收 反激電路是一種常見的電路設計,它通常用于將一個電源電壓轉換成較低的電壓。反激電路的優點在于它可以有效地控制電壓和電流,同時還能夠提高電源的效率。然而,在反激電路中,由于
2023-09-17 10:46:551929

怎么通過SPICE仿真來預測VDS開關尖峰

怎么通過SPICE仿真來預測VDS開關尖峰? SPICE仿真技術是電子工程師在設計和驗證電路時的必備工具。VDS開關尖峰是指在開關型功率器件的開關過程中,由于電感/電容元件存在的慣性導致開關電壓瞬間
2023-10-29 17:33:52243

電源波紋尖峰的的抑制措施

電子發燒友網站提供《電源波紋尖峰的的抑制措施.doc》資料免費下載
2023-11-14 09:53:380

碳化硅MOSFET尖峰的抑制

碳化硅MOSFET尖峰的抑制
2023-11-28 17:32:26323

如何抑制IGBT集電極過壓尖峰

如何抑制IGBT集電極過壓尖峰
2023-12-04 16:51:42717

功率管的開關波形對尖峰干擾的影響與抑制

。本文將詳細探討功率管開關波形對尖峰干擾的影響,并對抑制尖峰干擾的方法進行細致分析。 一、功率管開關波形的影響 1. 尖峰干擾的定義 尖峰干擾是指在功率管開關過程中,由于電壓和電流的突變導致的瞬態電壓或電流尖峰現象。
2023-11-29 10:55:56333

什么是去耦電容 有什么作用

一個很大的尖峰電流形成瞬變的噪聲電壓,這會對前級的正常工作產生影響。這就是耦合現象。對于噪聲能力較弱、關斷時電流變化較大的器件以及ROM、RAM等存儲型器件,應在芯片的電源線(Vcc)和地線(GND)之間直接接入去耦電容。 去耦電容的
2024-02-16 16:54:001259

pn結反向飽和電流到底是怎么形成的 它的大小跟哪些因素有關?

pn結反向飽和電流到底是怎么形成的 它的大小跟哪些因素有關? PN結反向飽和電流是指當PN結處于反向偏置狀態時,在一定條件下,流過PN結的電流達到一個穩定值。它是由多種因素共同作用形成的。下面將詳細
2024-02-18 14:51:54498

已全部加載完成

主站蜘蛛池模板: 挺进绝色老师的紧窄小肉六| 日本中文字幕伊人成中文字幕| 欧美内射AAAAAAXXXXX| 熟女强奷系列中文字幕| 亚洲色播永久网址大全| xxxxhd17欧美老师| 精品久久久99大香线蕉| 日本熟妇乱人伦A片精品软件| 亚洲精品第一页| xxxxhd17欧美老师| 解开白丝老师的短裙猛烈进入| 欧美xxxxb| 在线国内自拍精品视频| 国产人人为我我为人人澡| 欧洲精品不卡1卡2卡三卡四卡| 一级做a爰片久久免费| 父皇轻点插好疼H限| 老版香蕉版下载| 亚洲一卡二卡三卡四卡无卡麻豆| 国产av在在免费线观看美女| 欧美多毛的大隂道| 在线视频网站www色| 精品亚洲麻豆1区2区3区| 校园女教师之禁区| 菠萝菠萝蜜高清观看在线| 蜜桃成熟时33D在线嘟嘟网| 在线播放性xxx欧美| 久99视频精品免费观看福利| 亚洲国产成人久久一区www妖精| 国产精品久久久久AV麻豆| 日本女人水多| 啊轻点啊再深点视频免费| 女女破视频在线观看| MELODY在线播放无删减| 嫩B人妻精品一区二区三区| 99久久免热在线观看6| 欧美ⅹxxxx18性欧美| 99久久国产露脸精品国产吴梦梦| 免费啪视频观试看视频| 99久久婷婷国产麻豆精品电影| 暖暖视频在线高清播放|