所謂功率半導體器件,以前也被稱為電力電子器件,簡單來說,就是進行功率處理的,具有處理高電壓,大電流能力的半導體器件。其電壓處理范圍從幾十V~幾千V,電流能力最高可達幾千A。典型的功率處理,包括變頻、變壓、變流、功率管理等等。
早期的功率半導體器件包括:大功率二極管、晶閘管等等,主要用于工業和電力系統(正因如此,早期才被稱為電力電子器件)
后來,隨著以功率MOSFET器件為代表的新型功率半導體器件的迅速發展,現在功率半導體器件已經非常廣泛, 在計算機、通行、消費電子、汽車電子 為代表的4C行業(computer、communication、consumer electronics、cartronics),功率半導體器件可以說是越來越火,現在不是要節能環保嗎,所以就需要對電壓電流的運用進行有效的控制,這就與功率器件密不可分! 功率管理集成電路(Power Management IC,也被稱為電源管理IC)已經成為功率半導體器件的熱點,發展非常迅速噢!
如何正確選擇MOSFET管
隨著制造技術的發展和進步,系統設計人員必須跟上技術的發展步伐,才能為其設計挑選最合適的電子器件。MOSFET是電氣系統中的基本部件,工程師需要深入了解它的關鍵特性及指標才能做出正確選擇。本文將討論如何根據RDS(ON)、熱性能、雪崩擊穿電壓及開關性能指標來選擇正確的MOSFET。
MOSFET的選擇
MOSFET有兩大類型:N溝道和P溝道。在功率系統中,MOSFET可被看成電氣開關。當在N溝道MOSFET的柵極和源極間加上正電壓時,其開關導通。導通時,電流可經開關從漏極流向源極。漏極和源極之間存在一個內阻,稱為導通電阻RDS(ON)。必須清楚MOSFET的柵極是個高阻抗端,因此,總是要在柵極加上一個電壓。如果柵極為懸空,器件將不能按設計意圖工作,并可能在不恰當的時刻導通或關閉,導致系統產生潛在的功率損耗。當源極和柵極間的電壓為零時,開關關閉,而電流停止通過器件。雖然這時器件已經關閉,但仍然有微小電流存在,這稱之為漏電流,即IDSS。
第一步:選用N溝道還是P溝道
為設計選擇正確器件的第一步是決定采用N溝道還是P溝道MOSFET。在典型的功率應用中,當一個MOSFET接地,而負載連接到干線電壓上時,該MOSFET就構成了低壓側開關。在低壓側開關中,應采用N溝道MOSFET,這是出于對關閉或導通器件所需電壓的考慮。當MOSFET連接到總線及負載接地時,就要用高壓側開關。通常會在這個拓撲中采用P溝道MOSFET,這也是出于對電壓驅動的考慮。
要選擇適合應用的器件,必須確定驅動器件所需的電壓,以及在設計中最簡易執行的方法。下一步是確定所需的額定電壓,或者器件所能承受的最大電壓。額定電壓越大,器件的成本就越高。根據實踐經驗,額定電壓應當大于干線電壓或總線電壓。這樣才能提供足夠的保護,使MOSFET不會失效。就選擇MOSFET而言,必須確定漏極至源極間可能承受的最大電壓,即最大VDS。知道MOSFET能承受的最大電壓會隨溫度而變化這點十分重要。設計人員必須在整個工作溫度范圍內測試電壓的變化范圍。額定電壓必須有足夠的余量覆蓋這個變化范圍,確保電路不會失效。設計工程師需要考慮的其他安全因素包括由開關電子設備(如電機或變壓器)誘發的電壓瞬變。不同應用的額定電壓也有所不同;通常,便攜式設備為20V、FPGA電源為20~30V、85~220VAC應用為450~600V。
第二步:確定額定電流
第二步是選擇MOSFET的額定電流。視電路結構而定,該額定電流應是負載在所有情況下能夠承受的最大電流。與電壓的情況相似,設計人員必須確保所選的MOSFET能承受這個額定電流,即使在系統產生尖峰電流時。兩個考慮的電流情況是連續模式和脈沖尖峰。在連續導通模式下,MOSFET處于穩態,此時電流連續通過器件。脈沖尖峰是指有大量電涌(或尖峰電流)流過器件。一旦確定了這些條件下的最大電流,只需直接選擇能承受這個最大電流的器件便可。
選好額定電流后,還必須計算導通損耗。在實際情況下,MOSFET并不是理想的器件,因為在導電過程中會有電能損耗,這稱之為導通損耗。MOSFET在“導通”時就像一個可變電阻,由器件的RDS(ON)所確定,并隨溫度而顯著變化。器件的功率耗損可由Iload2×RDS(ON)計算,由于導通電阻隨溫度變化,因此功率耗損也會隨之按比例變化。對MOSFET施加的電壓VGS越高,RDS(ON)就會越小;反之RDS(ON)就會越高。對系統設計人員來說,這就是取決于系統電壓而需要折中權衡的地方。對便攜式設計來說,采用較低的電壓比較容易(較為普遍),而對于工業設計,可采用較高的電壓。注意RDS(ON)電阻會隨著電流輕微上升。關于RDS(ON)電阻的各種電氣參數變化可在制造商提供的技術資料表中查到。
技術對器件的特性有著重大影響,因為有些技術在提高最大VDS時往往會使RDS(ON)增大。對于這樣的技術,如果打算降低VDS和RDS(ON),那么就得增加晶片尺寸,從而增加與之配套的封裝尺寸及相關的開發成本。業界現有好幾種試圖控制晶片尺寸增加的技術,其中最主要的是溝道和電荷平衡技術。
在溝道技術中,晶片中嵌入了一個深溝,通常是為低電壓預留的,用于降低導通電阻RDS(ON)。為了減少最大VDS對RDS(ON)的影響,開發過程中采用了外延生長柱/蝕刻柱工藝。
第三步:確定熱要求
選擇MOSFET的下一步是計算系統的散熱要求。設計人員必須考慮兩種不同的情況,即最壞情況和真實情況。建議采用針對最壞情況的計算結果,因為這個結果提供更大的安全余量,能確保系統不會失效。在MOSFET的資料表上還有一些需要注意的測量數據;比如封裝器件的半導體結與環境之間的熱阻,以及最大的結溫。
器件的結溫等于最大環境溫度加上熱阻與功率耗散的乘積(結溫=最大環境溫度+[熱阻×功率耗散])。根據這個方程可解出系統的最大功率耗散,即按定義相等于I2×RDS(ON)。由于設計人員已確定將要通過器件的最大電流,因此可以計算出不同溫度下的RDS(ON)。值得注意的是,在處理簡單熱模型時,設計人員還必須考慮半導體結/器件外殼及外殼/環境的熱容量;即要求印刷電路板和封裝不會立即升溫。
雪崩擊穿是指半導體器件上的反向電壓超過最大值,并形成強電場使器件內電流增加。該電流將耗散功率,使器件的溫度升高,而且有可能損壞器件。半導體公司都會對器件進行雪崩測試,計算其雪崩電壓,或對器件的穩健性進行測試。計算額定雪崩電壓有兩種方法;一是統計法,另一是熱計算。而熱計算因為較為實用而得到廣泛采用。除計算外,技術對雪崩效應也有很大影響。例如,晶片尺寸的增加會提高抗雪崩能力,最終提高器件的穩健性。對最終用戶而言,這意味著要在系統中采用更大的封裝件。
第四步:決定開關性能
選擇MOSFET的最后一步是決定MOSFET的開關性能。影響開關性能的參數有很多,但最重要的是柵極/漏極、柵極/源極及漏極/源極電容。這些電容會在器件中產生開關損耗,因為在每次開關時都要對它們充電。MOSFET的開關速度因此被降低,器件效率也下降。為計算開關過程中器件的總損耗,設計人員必須計算開通過程中的損耗(Eon)和關閉過程中的損耗(Eoff)。MOSFET開關的總功率可用如下方程表達:Psw=(Eon+Eoff)×開關頻率。而柵極電荷(Qgd)對開關性能的影響最大。
基于開關性能的重要性,新的技術正在不斷開發以解決這個開關問題。芯片尺寸的增加會加大柵極電荷;而這會使器件尺寸增大。為了減少開關損耗,新的技術如溝道厚底氧化已經應運而生,旨在減少柵極電荷。
通過了解MOSFET的類型及了解和決定它們的重要性能特點,設計人員就能針對特定設計選擇正確的MOSFET。由于MOSFET是電氣系統中最基本的部件之一,選擇正確的MOSFET對整個設計是否成功起著關鍵的作用。
IGBT的正確選擇和使用
本文研究了逆變器核心開關器件IGBT主要參數的選擇, 分析三相逆變電路拓撲及功率器件IGBT的應用特點,根據其特點選擇合適額定電壓,額定電流和開關參數。以及優化設計柵電壓,克服Miller效應的影響,確保在IGBT應用過程中的可靠性。
0 前言
伴隨科學技術的發展和低碳經濟的要求,逆變器在各行各業中應用飛速發展,而IGBT是目前逆變器中使用的主流開關器件,也在逆變結構中起核心作用。采用IGBT進行功率變換,能夠提高用電效率,改善用電質量。新型IGBT逆變技術是推動我國低碳經濟發展戰略的突破口,同時緩解能源,資源和環境等方面的壓力,加快轉變經濟增長方式,促進信息化帶動工業化, 提高國家經濟安全性,起著重要作用,因此,IGBT在逆變器中的正確選擇與使用,有著舉足輕重的作用。逆變技術對IGBT的參數要求并不是一成不變的,逆變技術已從硬開關技術,移相軟開關技術發展到雙零軟開關技術,各個技術之間存在相輔相成的紐帶關系, 同時具有各自的應用電路要求特點,因而,對開關器件的IGBT的要求各不相同。而IGBT正確選擇與使用尤為重要。
1 IGBT額定電壓的選擇
三相380V輸入電壓經過整流和濾波后,直流母線電壓的最大值:
在開關工作的條件下,fGBT的額定電壓一般要求高于直流母線電壓的兩倍,根據IGBT規格的電壓等級,選擇1 200V電壓等級的IGBT。
2 IGBT額定電流的選擇
以30kW變頻器為例,負載電流約為79A,由于負載電氣啟動或加速時,電流過載,一般要求1分鐘的時間內,承受1.5倍的過流,擇最大負載電流約為119A ,建議選擇150A電流等級的IGBT。
3 IGBT開關參數的選擇
變頻器的開關頻率一般小于10 kH Z,而在實際工作的過程中,fGBT的通態損耗所占比重比較大,建議選擇低通態型IGBT,以30 kW ,逆變頻率小于10kH z的變頻器為例,選擇IGBT的開關參數見表1。
4 影響IGBT可靠性因素
1)柵電壓。
IGBT工作時,必須有正向柵電壓,常用的柵驅動電壓值為15~187,最高用到20V, 而棚電壓與柵極電阻Rg有很大關系,在設計IGBT驅動電路時, 參考IGBT Datasheet中的額定Rg值,設計合適驅動參數,保證合理正向柵電壓。因為IGBT的工作狀態與正向棚電壓有很大關系,正向柵電壓越高,開通損耗越小,正向壓降也咯小。
在橋式電路和大功率應用情況下,為了避免干擾,在IGBT關斷時,柵極加負電壓,一般在-5- 15V,保證IGBT的關斷,避免Miller效應影響。
2)Miller效應。
為了降低Miller效應的影響,在IGBT柵驅動電路中采用改進措施:(1)開通和關斷采用不同柵電阻Rg,on和Rg,off,確保IGBT的有效開通和關斷;(2)柵源間加電容c,對Miller效應產生的電壓進行能量泄放;(3)關斷時加負柵壓。在實際設計中,采用三者合理組合,對改進Mille r效應的效果更佳。
? ? ? ??
? ? ? ? ?結論
?。?)IGBT是逆變器主要使用的主要功率開關器件,也是逆變器中主要工作器件,合理選擇IGBT是保證IGBT可靠工作的前提,同時,要根據三相逆變電路結構的特點,選擇低通態型IGBT為佳。
主要參數如下
Vce
ICM
ILM
IC @ TC = 25°C
IC @ TC = 100°C
IF @ TC = 25°C
IF @ TC = 100°C
IFM(Diode Max Forward Current)
VGE
以上參數主要決定了所選擇管子的規格。其中耐壓、耐流和耐最大沖擊電流能力都需要特別關注,特別是電源中有開機的inrush current一般會很大,需要較大的ICM.驅動電壓多少我不用多說了,一定溫度下電流通流能力是做一個很重要的參數,直接關系到你做halt試驗結果。
PD @ TC = 25°C
PD @ TC = 100°C
Rθjc( IGBT)
Rθjc(Diode)
Rθcs(Case-to-Sink.。.)
Rθja(Junction-to-Ambient.。.)
以上直接決定擬所選擇管子的熱設計,知道以上參數可以推算出junction的溫度,也就是溫度最高點的溫度
VCE(on)
VFM
Diode Forward Voltage Drop
Eon
Eoff
Etot
Eon
Eoff
Etot
Td(on)
Tr
Td(off)
Trr
Irr
以上參數直接關系到你計算管子的損耗計算,是前期研發的重要參數,直接關系到你估計的損耗,接合熱阻等概念,直接可以大概估計你所選擇管子的熱設計如何選擇。
最后當然還有個重要的參數就是價格了。
以上我列出了的igbt 和mosfet的項目中帶有體內二極管,如果沒有體內二極管的管子,你當然應知道該如何處理
(2)根據IGBT的棚特性。合理設計柵驅動結構, 保證IGBT有效的開通和關斷, 降低Miller效應的影響。
?
評論
查看更多