SoC(System on Chip):片上系統
基本概念
從狹義角度講,它是信息系統核心的芯片集成,是將系統關鍵部件集成在一塊芯片上;從廣義角度講, SoC是一個微小型系統,如果說中央處理器(CPU)是大腦,那么SoC就是包括大腦、心臟、眼睛和手的系統。國內外學術界一般傾向將SoC定義為將微處理器、模擬IP核、數字IP核和存儲器(或片外存儲控制接口)集成在單一芯片上,它通常是客戶定制的,或是面向特定用途的標準產品。
SoC定義的基本內容主要表現在兩方面:其一是它的構成,其二是它形成過程。系統級芯片的構成可以是系統級芯片控制邏輯模塊、微處理器/微控制器CPU 內核模塊、數字信號處理器DSP模塊、嵌入的存儲器模塊、和外部進行通訊的接口模塊、含有ADC /DAC 的模擬前端模塊、電源提供和功耗管理模塊,對于一個無線SoC還有射頻前端模塊、用戶定義邏輯(它可以由FPGA 或ASIC實現)以及微電子機械模塊,更重要的是一個SoC 芯片內嵌有基本軟件(RDOS或COS以及其他應用軟件)模塊或可載入的用戶軟件等。系統級芯片形成或產生過程包含以下三個方面:
1) 基于單片集成系統的軟硬件協同設計和驗證;
2) 再利用邏輯面積技術使用和產能占有比例有效提高即開發和研究IP核生成及復用技術,特別是大容量的存儲模塊嵌入的重復應用等;
3) 超深亞微米(VDSM) 、納米集成電路的設計理論和技術。
SoC設計的關鍵技術
具體地說, SoC設計的關鍵技術主要包括總線架構技術、IP核可復用技術、軟硬件協同設計技術、SoC驗證技術、可測性設計技術、低功耗設計技術、超深亞微米電路實現技術等,此外還要做嵌入式軟件移植、開發研究,是一門跨學科的新興研究領域。
技術發展
集成電路的發展已有40年的歷史,它一直遵循摩爾所指示的規律推進,現已進入深亞微米階段。由于信息市場的需求和微電子自身的發展,引發了以微細加工(集成電路特征尺寸不斷縮小)為主要特征的多種工藝集成技術和面向應用的系統級芯片的發展。隨著半導體產業進入超深亞微米乃至納米加工時代,在單一集成電路芯片上就可以實現一個復雜的電子系統,諸如手機芯片、數字電視芯片、DVD 芯片等。在未來幾年內,上億個晶體管、幾千萬個邏輯門都可望在單一芯片上實現。 SoC (System - on - Chip)設計技術始于20世紀90年代中期,隨著半導體工藝技術的發展,IC設計者能夠將愈來愈復雜的功能集成到單硅片上, SoC正是在集成電路( IC)向集成系統( IS)轉變的大方向下產生的。1994年Motorola發布的FlexCore系統(用來制作基于68000和PowerPC的定制微處理器)和1995年LSILogic公司為Sony公司設計的SoC,可能是基于IP( IntellectualProperty)核完成SoC設計的最早報導。由于SoC可以充分利用已有的設計積累,顯著地提高了ASIC的設計能力,因此發展非常迅速,引起了工業界和學術界的關注。
SOC是集成電路發展的必然趨勢,1. 技術發展的必然2. IC 產業未來的發展。
技術特點
半導體工藝技術的系統集成
軟件系統和硬件系統的集成
SoC具有以下幾方面的優勢,因而創造其產品價值與市場需求:
降低耗電量、減少體積、增加系統功能、提高速度、節省成本設計的關鍵技術。
具體地說, SoC設計的關鍵技術主要包括總線架構技術、IP核可復用技術、軟硬件協同設計技術、SoC驗證技術、可測性設計技術、低功耗設計技術、超深亞微米電路實現技術等,此外還要做嵌入式軟件移植、開發研究,是一門跨學科的新興研究領域。
發展趨勢及存在問題
當前芯片設計業正面臨著一系列的挑戰,系統芯片SoC已經成為IC設計業界的焦點, SoC性能越來越強,規模越來越大。SoC芯片的規模一般遠大于普通的ASIC,同時由于深亞微米工藝帶來的設計困難等,使得SoC設計的復雜度大大提高。在SoC設計中,仿真與驗證是SoC設計流程中最復雜、最耗時的環節,約占整個芯片開發周期的50%~80% ,采用先進的設計與仿真驗證方法成為SoC設計成功的關鍵。SoC技術的發展趨勢是基于SoC開發平臺,基于平臺的設計是一種可以達到最大程度系統重用的面向集成的設計方法,分享IP核開發與系統集成成果,不斷重整價值鏈,在關注面積、延遲、功耗的基礎上,向成品率、可靠性、EMI 噪聲、成本、易用性等轉移,使系統級集成能力快速發展。 所謂SoC技術,是一種高度集成化、固件化的系統集成技術。使用SoC技術設計系統的核心思想,就是要把整個應用電子系統全部集成在一個芯片中。在使用SoC技術設計應用系統,除了那些無法集成的外部電路或機械部分以外,其他所有的系統電路全部集成在一起。
應用概念
1.系統功能集成是SoC的核心技術
在傳統的應用電子系統設計中,需要根據設計要求的功能模塊對整個系統進行綜合,即 根據設計要求的功能,尋找相應的集成電路,再根據設計要求的技術指標設計所選電路的連 接形式和參數。這種設計的結果是一個以功能集成電路為基礎,器件分布式的應用電子系統結構。設計結果能否滿足設計要求不僅取決于電路芯片的技術參數,而且與整個系統PCB版圖的電磁兼容特性有關。同時, 對于需要實現數字化的系統,往往還需要有單片機等參與,所以還必須考慮分布式系統對電路固件特性的影響。很明顯,傳統應用電子系統的實現,采用的是分布功能綜合技術。
對于SoC來說,應用電子系統的設計也是根據功能和參數要求設計系統,但與傳統方法有著本質的差別。SoC不是以功能電路為基礎的分布式系統綜合技術。而是以功能IP為基礎的系統固件和電路綜合技術。首先,功能的實現不再針對功能電路進行綜合,而是針對系統整體固件實現進行電路綜合,也就是利用IP技術對系統整體進行電路結合。其次,電路設計的最終結果與IP功能模塊和固件特性有關,而與PCB板上電路分塊的方式和連線技術基本無關。因此,使設計結果的電磁兼容特性得到極大提高。換句話說,就是所設計的結果十分接近理想設計目標。
2.固件集成是SoC的基礎設計思想
在傳統分布式綜合設計技術中,系統的固件特性往往難以達到最優,原因是所使用的是分布式功能綜合技術。一般情況下,功能集成電路為了滿足盡可能多的使用面,必須考慮兩個設計目標:一個是能滿足多種應用領域的功能控制要求目標;另一個是要考慮滿足較大范圍應用功能和技術指標。因此,功能集成電路(也就是定制式集成電路)必須在I/O和控制方面附加若干電路,以使一般用戶能得到盡可能多的開發性能。但是,定制式電路設計的應用電子系統不易達到最佳,特別是固件特性更是具有相當大的分散性。
對于SoC來說,從SoC的核心技術可以看出,使用SoC技術設計應用電子系統的基本設計思想就是實現全系統的固件集成。用戶只須根據需要選擇并改進各部分模塊和嵌入結構,就能實現充分優化的固件特性,而不必花時間熟悉定制電路的開發技術。固件基礎的突發優點就是系統能更接近理想系統,更容易實現設計要求。
3.嵌入式系統是SoC的基本結構
在使用SoC技術設計的應用電子系統中,可以十分方便地實現嵌入式結構。各種嵌入結構的實現十分簡單,只要根據系統需要選擇相應的內核,再根據設計要求選擇之相配合的IP模塊,就可以完成整個系統硬件結構。尤其是采用智能化電路綜合技術時,可以更充分地實現整個系統的固件特性,使系統更加接近理想設計要求。必須指出,SoC的這種嵌入式結構可以大大地縮短應用系統設計開發周期。
4.IP是SoC的設計基礎
傳統應用電子設計工程師面對的是各種定制式集成電路,而使用SoC技術的電子系統設計工程師所面對的是一個巨大的IP庫,所有設計工作都是以IP模塊為基礎。SoC技術使應用電子系統設計工程師變成了一個面向應用的電子器件設計工程師西叉歐。由此可見,SoC是以IP模塊為基礎的設計技術,IP是SoC應用的基礎。
5.SoC技術中的不同階段
用SoC技術設計應用電子系統的幾個階段如圖1所示。在功能設計階段,設計者必須充分考慮系統的固件特性,并利用固件特性進行綜合功能設計。當功能設計完成后,就可以進入IP綜合階段。IP綜合階段的任務利用強大的IP庫實現系統的功能I。P結合結束后,首先進行功能仿真,以檢查是否實現了系統的設計功能要求。功能仿真通過后,就是電路仿真,目的是檢查IP模塊組成的電路能否實現設計功能并達到相應的設計技術指標。設計的最后階段是對制造好的SoC產品進行相應的測試,以便調整各種技術參數,確定應用參數。
評論
查看更多