無刷直流電機由電動機主體和驅動器組成,是一種典型的機電一體化產品。 無刷電機是指無電刷和換向器(或集電環)的電機,又稱無換向器電機。早在十九紀誕生電機的時候,產生的實用性電機就是無刷形式,即交流鼠籠式異步電動機,這種電動機得到了廣泛的應用。但是,異步電動機有許多無法克服的缺陷,以致電機技術發展緩慢。上世紀中葉誕生了晶體管,因而采用晶體管換向電路代替電刷與換向器的直流無刷電機就應運而生了。這種新型無刷電機稱為電子換向式直流電機,它克服了第一代無刷電機的缺陷。
本文要介紹電機種類中發展快速且應用廣泛的無刷直流電機(以下簡稱BLDC)。BLDC被廣泛的用于日常生活用具、汽車工業、航空、消費電子、醫學電子、工業自動化等裝置和儀表。 顧名思義,BLDC不使用機械結構的換向電刷而直接使用電子換向器,在使用中BLDC相比有刷電機有許多的優點。
BLDC(無刷直流電機)的結構
直流無刷電機是同步電機的一種,也就是說電機轉子的轉速受電機定子旋轉磁場的速度及轉子極數(p)影響:
n=60.f / p。在轉子極數固定情況下,改變定子旋轉磁場的頻率就可以改變轉子的轉速。直流無刷電機即是將同步電機加上電子式控制(驅動器),控制定子旋轉磁場的頻率并將電機轉子的轉速回授至控制中心反復校正,以期達到接近直流電機特性的方式。也就是說直流無刷電機能夠在額定負載范圍內當負載變化時仍可以控制電機轉子維持一定的轉速。
直流無刷驅動器包括電源部及控制部:電源部提供三相電源給電機,控制部則依需求轉換輸入電源頻率。
電源部可以直接以直流電輸入(一般為24v)或以交流電輸入(110v/220 v),如果輸入是交流電就得先經轉換器轉成直流。不論是直流電輸入或交流電輸入要轉入電機線圈前須先將直流電壓由換流器轉成3相電壓來驅動電機。換流器一般由6個功率晶體管(q1~q6)分為上臂(q1、q3、q5)/下臂(q2、q4、q6)連接電機作為控制流經電機線圈的開關。控制部則提供pwm(脈沖寬度調制)決定功率晶體管開關頻度及換流器換相的時機。直流無刷電機一般希望使用在當負載變動時速度可以穩定于設定值而不會變動太大的速度控制,所以電機內部裝有能感應磁場的霍爾傳感器,做為速度之閉回路控制,同時也做為相序控制的依據。但這只是用來做為速度控制并不能拿來做為定位控制。
1、定子
BLDC定子是由許多硅鋼片經過疊壓和軸向沖壓而成,每個沖槽內都有一定的線圈組成了繞組,可以參見下圖。從傳統意義上講,BLDC的定子和感應電機的定子有點類似,不過在定子繞組的分布上有一定的差別。大多數的BLDC定子有3個呈星行排列的繞組,每個繞組又由許多內部結合的鋼片按照一定的方式組成,偶數個繞組分布在定子的周圍組成了偶數個磁極。
圖2.1.1. BLDC內部結構
BLDC的定子繞組可以分為梯形和正弦兩種繞組,它們的根本區別在于由于繞組的不同連接方式使它們產生的反電動勢(反電動勢的相關介紹請參加EMF一節)不同,分別呈現梯形和正弦波形,故用此命名了。梯形和正弦繞組產生的反電動勢的波形圖如下圖。
另外還需要對反電動勢的一點說明就是繞組的不同其相電流也是呈現梯形和正弦波形,可想而知正弦繞組由于波形平滑所以運行起來相對梯形繞組來說就更平穩一些。但是,正弦型繞組由于有更多繞組使得其在銅線的使用上就相對梯形繞組要多。
平時由于應用電壓的不同,我們可以根據需要選擇不同電壓范圍的無刷電機。48V及其以下應用電壓的電機可以用在汽車、機器人、小型機械臂等方面。100V及其以上電壓范圍的電機可以用在專用器具、自動控制以及工業生產領域。
2、轉子
定子是2至8對永磁體按照N極和S極交替排列在轉子周圍構成的(內轉子型),如果是外轉子型BLDC那么就是貼在轉子內壁咯。如圖2.2.1所示;
圖2.2.1 轉子磁極排布
3、霍爾傳感器
與有刷直流電機不同,無刷直流電機使用電子方式換向。要使BLDC轉起來,必須要按照一定的順序給定子通電,那么我們就需要知道轉子的位置以便按照通電次序給相應的定子線圈通電。定子的位置是由嵌入到定子的霍爾傳感器感知的。通常會安排3個霍爾傳感器在轉子的旋轉路徑周圍。無論何時,只要轉子的磁極掠過霍爾元件時,根據轉子當前磁極的極性霍爾元件會輸出對應的高或低電平,這樣只要根據3個霍爾元件產生的電平的時序就可以判斷當前轉子的位置,并相應的對定子繞組進行通電。
霍爾效應:當通電導體處于磁場中,由于磁場的作用力使得導體內的電荷會向導體的一側聚集,當薄平板通電導體處于磁場中時這種效應更為明顯,這樣一側聚集了電荷的導體會抵消磁場的這種影響,由于電荷在導體一側的聚集,從而使得導體兩側產生電壓,這種現象就稱為霍爾效應,E.H霍爾在1879年發現了這一現象,故以此命名。
圖2.3.1 霍爾傳感器測量原理
圖 2.3.1顯示了NS磁極交替排列的轉子的橫截面。霍爾元件安放在電機的固定位置,將霍爾元件安放到電機的定子是比較復雜的,因為如果安放時位置沒有和轉子的磁場相切那么就可能導致霍爾元件的測量值不能準確的反應轉子當前的位置,鑒于以上原因,為了簡化霍爾元件的安裝,通常在電機的轉子上安裝一顆冗余的磁體,這個磁體專門用來感應霍爾元件,這樣就能起到和轉子磁體感應的相同效果,霍爾元件一般按照圓周安放在印刷電路板上并配備了調節蓋,這樣用戶就可以根據磁場的方向非常方便的調節霍爾元件的位置以便使它工作在最佳狀態。
霍爾元件位置的安排上,有60夾角和120夾角兩種。基于這種擺放形式,BLDC的電流換向順序由制造廠商制定,當我們控制電機的時候就需要用到這種換向順序。
注意:霍爾元件的電壓范圍從4V到24V不等,電流范圍從5mA到15mA不等,所以在考慮控制器時要考慮到霍爾元件的電流和電壓要求。另外,霍爾元件輸出集電極開路,使用時需要接上拉電阻。
無刷直流電機的工作原理
無刷直流電機由電動機主體和驅動器組成,是一種典型的機電一體化產品。 電動機的定子繞組多做成三相對稱星形接法,同三相異步電動機十分相似。電動機的轉子上粘有已充磁的永磁體 ,為了檢測電動機轉子的極性,在電動機內裝有位置傳感器。驅動器由功率電子器件和集成電路等構成,其功能是:接受電動機的啟動、停止、制動信號,以控制電動機的啟動、停止和制動;接受位置傳感器信號和正反轉信號,用來控制逆變橋各功率管的通斷,產生連續轉矩;接受速度指令和速度反饋信號,用來控制和調整轉速;提供保護和顯示等等。
直流電機具有響應快速、較大的起動轉矩、從零轉速至額定轉速具備可提供額定轉矩的性能,但直流電機的優點也正是它的缺點,因為直流電機要產生額定負載下恒定轉矩的性能,則電樞磁場與轉子磁場須恒維持90°,這就要藉由碳刷及整流子。碳刷及整流子在電機轉動時會產生火花、碳粉因此除了會造成組件損壞之外,使用場合也受到限制。交流電機沒有碳刷及整流子,免維護、堅固、應用廣,但特性上若要達到相當于直流電機的性能須用復雜控制技術才能達到。現今半導體發展迅速功率組件切換頻率加快許多,提升驅動電機的性能。微處理機速度亦越來越快,可實現將交流電機控制置于一旋轉的兩軸直角坐標系統中,適當控制交流電機在兩軸電流分量,達到類似直流電機控制并有與直流電機相當的性能。
此外已有很多微處理機將控制電機必需的功能做在芯片中,而且體積越來越小;像模擬/數字轉換器(analog-to-digital converter,adc)、脈沖寬度調制(pulse wide modulator,pwm)…等。直流無刷電機即是以電子方式控制交流電機換相,得到類似直流電機特性又沒有直流電機機構上缺失的一種應用。
1、操作原理
每一次換向都會有一組繞組處于正向通電;第二組反相通電;第三組不通電。轉子永磁體的磁場和定子鋼片產生的磁場相互作用就產生了轉矩,理論上,當這兩個磁場夾角為90?時會產生最大的轉矩,當這兩個磁場重合時轉矩變為0,為了使轉子不停的轉動,那么就需要按順序改變定子的磁場,就像轉子的磁場一直在追趕定子的磁場一樣。典型的“六步電流換向”順序圖展示了定子內繞組的通電次序。
2、轉矩/轉速特性
圖 2.5.1 轉矩和速度特性顯示了轉矩和轉速特性。BLDC一共有兩種轉矩度量:最大轉矩和額定轉矩。當電機連續運轉的時候表現出來的就是額定轉矩。在無刷電機達到額定轉速之前,轉矩不變,無刷電機最高轉速可以達到額定轉速的150%,但是超速時電機的轉矩會相應下降。
在實際的應用中,我們常常會讓帶負載的電機啟動、停轉和逆向運行,此時就需要比額定轉矩更大的轉矩。特別是當轉子靜止和反方向加速時啟動電機,這個時候就需要更大的轉矩來抵消負載和轉子自身的慣性,這個時候就需要提供最大的轉矩一直到電機進入正向轉矩曲線階段。
圖2.5.1 轉矩和速度特性
推薦課程:
張飛軟硬開源,基于STM32?BLDC直流無刷電機驅動器視頻套件
http://t.elecfans.com/topic/42.html?elecfans_trackid=fsy_post
評論
查看更多