自舉升壓電路的原理圖,如圖1所示。所謂的自舉升壓原理,就是在輸入端IN輸入一個方波信號,利用電容Cboot將A點電壓抬升至高于VDD的電平,這樣就可以在B端輸出一個與輸入信號反相,且高電平高于VDD的方波信號。具體工作原理如下。
當VIN為高電平時,NMOS管N1導(dǎo)通,PMOS管P1截止,C點電位為低電平。同時N2導(dǎo)通,P2的柵極電位為低電平,則P2導(dǎo)通。這就使得此時A點電位約為VDD,電容Cboot兩端電壓UC≈VDD。由于N3導(dǎo)通,P4截止,所以B點的電位為低電平。這段時間稱為預(yù)充電周期。
當VIN變?yōu)榈碗娖綍r,NMOS管N1截止,PMOS管P1導(dǎo)通,C點電位為高電平,約為VDD。同時N2、N3截止,P3導(dǎo)通。這使得P2的柵極電位升高,P2截止。此時A點電位等于C點電位加上電容Cboot兩端電壓,約為2VDD。而且P4導(dǎo)通,因此B點輸出高電平,且高于VDD。這段時間稱為自舉升壓周期。 實際上,B點電位與負載電容和電容Cboot
的大小有關(guān),可以根據(jù)設(shè)計需要調(diào)整。具體關(guān)系將在介紹電路具體設(shè)計時詳細討論。在圖2中給出了輸入端IN電位與A、B兩點電位關(guān)系的示意圖。驅(qū)動電路結(jié)構(gòu) 圖3中給出了驅(qū)動電路的電路圖。驅(qū)動電路采用Totem輸出結(jié)構(gòu)設(shè)計,上拉驅(qū)動管為NMOS管N4、晶體管Q1和PMOS管P5。下拉驅(qū)動管為NMOS管N5。圖中CL為負載電容,Cpar為B點的寄生電容。虛線框內(nèi)的電路為自舉升壓電路。 本驅(qū)動電路的設(shè)計思想是,利用自舉升壓結(jié)構(gòu)將上拉驅(qū)動管N4的柵極(B點)電位抬升,使得UB》VDD+VTH ,則NMOS管N4工作在線性區(qū),使得VDSN4 大大減小,最終可以實現(xiàn)驅(qū)動輸出高電平達到VDD。而在輸出低電平時,下拉驅(qū)動管本身就工作在線性區(qū),可以保證輸出低電平位GND。因此無需增加自舉電路也能達到設(shè)計要求。
考慮到此驅(qū)動電路應(yīng)用于升壓型DC-DC轉(zhuǎn)換器的開關(guān)管驅(qū)動,負載電容CL很大,一般能達到幾十皮法,還需要進一步增加輸出電流能力,因此增加了晶體管Q1作為上拉驅(qū)動管。這樣在輸入端由高電平變?yōu)榈碗娖綍r,Q1導(dǎo)通,由N4、Q1同時提供電流,OUT端電位迅速上升,當OUT端電位上升到VDD-VBE時,Q1截止,N4繼續(xù)提供電流對負載電容充電,直到OUT端電壓達到VDD。
在OUT端為高電平期間,A點電位會由于電容Cboot 上的電荷泄漏等原因而下降。這會使得B點電位下降,N4的導(dǎo)通性下降。同時由于同樣的原因,OUT端電位也會有所下降,使輸出高電平不能保持在VDD。為了防止這種現(xiàn)象的出現(xiàn),又增加了PMOS管P5作為上拉驅(qū)動管,用來補充OUT端CL的泄漏電荷,維持OUT端在整個導(dǎo)通周期內(nèi)為高電平。
驅(qū)動電路的傳輸特性瞬態(tài)響應(yīng)在圖4中給出。其中(a)為上升沿瞬態(tài)響應(yīng),(b)為下降沿瞬態(tài)響應(yīng)。從圖4中可以看出,驅(qū)動電路上升沿明顯分為了三個部分,分別對應(yīng)三個上拉驅(qū)動管起主導(dǎo)作用的時期。1階段為Q1、N4共同作用,輸出電壓迅速抬升,2階段為N4起主導(dǎo)作,使輸出電平達到VDD,3階段為P5起主導(dǎo)作用,維持輸出高電平為VDD。而且還可以縮短上升時間,下降時間滿足工作頻率在兆赫茲級以上的要求。
評論
查看更多