電磁感應加熱,或簡稱感應加熱,是加熱導體材料比如金屬材料的一種方法。它主要用于金屬熱加工、熱處理、焊接和熔化。顧名思義,感應加熱是利用電磁感應的方法使被加熱的材料的內部產生電流,依靠這些渦流的能量達到加熱目的。感應加熱系統的基本組成包括感應線圈,交流電源和工件。根據加熱對象不同,可以把線圈制作成不同的形狀。線圈和電源相連,電源為線圈提供交變電流,流過線圈的交變電流產生一個通過工件的交變磁場,該磁場使工件產生渦流來加熱。
一、電磁感應加熱原理
生磁的過程是通過電磁加熱裝置的轉換,將50HZ/60HZ的交流電變換成直流電壓,再經過控制電路將直流電壓轉換頻率為20-40KHZ的高頻電壓輸出,快速運動的高壓電流在線纜內產生高速變化的磁場磁生熱,電纜與鐵質容器接觸后容器表面具即切割交變磁力線而在容器底部金屬部分產生交變的電流(即渦流),渦流使容器底部的鐵原子高速無規則運動,原子互相碰撞、摩擦而產生熱能。
簡單說,電磁感應加熱的原理就是利用電、磁、熱能間的轉換達到使被加熱物體自身發熱的效果。
二、電磁感應加熱條件
1、轉換電能的電磁加熱裝置
2、傳遞電能的電纜
3、含鐵質的容器巨大的熱能能夠使得被加熱物品自身發熱。
三、電磁加熱技術應用領域
應用電磁加熱技術原理的產品,電磁加熱控制器的應用范圍非常廣泛:
1、塑機械加熱、木材、建筑、食品、醫療、化工等節能改造,如塑料注射機,擠出機,吹膜機,拉絲機,塑料薄膜,管材,線材等機器、食品加工、紡織、印染、冶金、輕工、機械、表面熱處理及焊接,鍋爐,開水爐等行業,可以替代電阻加熱,以及燃料明火傳統能源。
2、紡織印染 原料采用電磁加熱可以提高能源利用效率,提高加熱速度,提高溫度控制精度
3、輕工行業 罐頭以及其它塑料包裝的封口等等。鍋爐行業 電磁鍋爐利用其加熱速度快的特點,可拋棄傳統鍋爐整體加熱的方式,只在鍋爐的出水端進行加熱,使水流在流動中完成加熱,加熱速度快,節省空間。
4、機械行業 高頻電磁加熱可以應用于與金屬表明熱處理,其效果比傳統處理方式有顯著提高,其他如各種機械零件的淬火,以及淬火后的回火、退火和正火等熱處理的加熱,壓力加工前的透熱電磁加熱技術的應用,不僅有利于產品品質、生產效率的提升和節能降耗降低成本,也提升了設備制造企業的技術水平,在傳統行業中越來越廣泛地被接受和使用。
四、自制zvs感應加熱教程
總體架構:串聯諧振2.5KW 鎖相環追頻ZVS,MOSFET全橋逆變;
磁芯變壓器兩檔阻抗變換,水冷散熱,市電自耦調壓調功,母線過流保護。 在開始制作之前,有必要明確一些基礎性原理及概念,這樣才不至于一頭霧水。
1.加熱機制
1.1 渦流,只要是金屬物體處于交變磁場中,都會產生渦流,強大的高密度渦流能迅速使工件升溫。這個機制在所有電阻率不為無窮大的導體中均存在。
1.2 感應環流,工件相當于一個短路的1匝線圈,與感應線圈構成一個空心變壓器,由于電流比等于匝比的反比,工件上的電流是感應線圈中電流的N(匝數)倍,強大的感應短路電流使工件迅速升溫。這個機制在任何導體中均存在,恒定磁通密度情況下,工件與磁場矢量正交的面積越大,工件上感生的電流越大,效率越高。由此可看出,大磁通切割面積的工件比小面積的工件更容易獲得高溫。
1.3 磁疇摩擦(在鐵磁體內存在著無數個線度約為10-4m的原本已經磁化了的小區域,這些小區域叫磁疇),鐵磁性物質的磁疇,在交變磁場的磁化與逆磁環作用下,劇烈摩擦,產生高溫。這個機制在鐵磁性物質中占主導。
由此可看出,不同材料的工件,因為加熱的機制不同,造成的加熱效果也不一樣。其中鐵磁物質三中機制都占,加熱效果最好。鐵磁質加熱到居里點以上時,轉為順磁性,磁疇機制減退甚至消失。這時只能靠剩余兩個機制繼續加熱。
當工件越過居里點后,磁感應現象減弱,線圈等效阻抗大幅下降,致使諧振回路電流增大。越過居里點后,線圈電感量也跟著下降。LC回路的固有諧振頻率會發生變化。致使固定激勵方式的加熱器失諧而造成設備損壞或效率大減。
2.為什么要采用諧振?應采用何種諧振?
2.1 為什么要采用諧振?
曾經以為只要往感應線圈中通入足夠強的電流,就成一臺感應加熱設備了。也對此做了一個實驗,見下圖。
實驗中確實有加熱效果,但是遠遠沒有達到電源的輸出功率應有的效果。這是為什么呢,我們來分析一下,顯然,對于固定的工件,加熱效果與逆變器實際輸出功率成正比。對于感應線圈,基本呈現純感性,也就是其間的電流變化永遠落后于兩端電壓的變化,也就是說電壓達到峰值的時候,電流還未達到峰值,功率因數很低。我們知道,功率等于電壓波形與電流波形的重疊面積,而在電感中,電流與電壓波形是錯開一個角度的,這時的重疊面積很小,即便其中通過了巨大的電流,也是做無用功。這是如果單純的計算P=UI,得到的只是無功功率。
而對于電容,正好相反,其間的電流永遠超前于電壓變化。如果將電容與電感構成串聯或并聯諧振,一個超前,一個滯后,諧振時正好抵消掉。因此電容在這里也叫功率補償電容。這時從激勵源來看,相當于向一個純阻性負載供電,電流波形與電壓波形完全重合,輸出最大的有功功率。這就是為什么要采取串(并)補償電容構成諧振的主要原因。
2.2 LC諧振有串聯諧振和并聯諧振,該采用什么結構?
說得直白一點,并聯諧振回路,諧振電壓等于激勵源電壓,而槽路(TANK)中的電流等于激勵電流的Q倍。串聯諧振回路的槽路電流等于激勵源電流,而L,C兩端的電壓等于激勵源電壓的Q倍,各有千秋。 從電路結構來看:
對于恒壓源激勵(半橋,全橋),應該采用串聯諧振回路,因為供電電壓恒定,電流越大,輸出功率也就越大,對于串聯諧振電路,在諧振點時整個回路阻抗最小,諧振電流也達到最大值,輸出最大功率。串聯諧振時,空載的回路Q值最高,L,C兩端電壓較高,槽路電流白白浪費在回路電阻上,發熱巨大。
對于恒流源激勵(如單管電路),應采用并聯諧振,自由諧振時LC端電壓很高,因此能獲得很大功率。并聯諧振有個很重要的優點,就是空載時回路電流最小,發熱功率也很小。值得一提的是,從實驗效果來看,同樣的諧振電容和加熱線圈,同樣的驅動功率,并聯諧振適合加熱體積較大的工件,串聯諧振適合加熱體積小的工件。
3.制作過程
明白了以上原理后,可以著手打造我們的感應加熱設備了。我們制作的這個設備主要由調壓整流電源、鎖相環、死區時間發生器、GDT電路、MOS橋、阻抗變換變壓器、LC槽路以及散熱系統幾大部分組成,見下圖。
我們再來對構成系統的原理圖進行一些分析,如下:
槽路部分:
從上圖可以看出,C1、C2、C3、L1以及T1的次級(左側)共同構成了一個串聯諧振回路,因為變壓器次級存在漏感,回路的走線也存在分布電感,所以實際諧振頻率要比單純用C1-C3容量與L1電感量計算的諧振頻率略低。圖中L1實際上為1uH,我將漏感分布電感等加在里面所以為1.3uH,如圖參數諧振頻率為56.5KHz。
從逆變橋輸出的高頻方波激勵信號從J2-1輸入,通過隔直電容C4及單刀雙擲開關S1后進入T1的初級,然后流經1:100電流互感器后從J2-2回流進逆變橋。在這里,C4單純作為隔直電容,不參與諧振,因此應選擇容量足夠大的無感無極性電容,這里選用CDE無感吸收電容1.7uF 400V五只并聯以降低發熱。
S1的作用為阻抗變換比切換,當開關打到上面觸點時,變壓器的匝比為 35:0.75,折合阻抗變比為2178:1;當開關打到下面觸點時,變壓器匝比為24:0.75,折合阻抗變比為1024:1。為何要設置這個阻抗變比切換,主要基于以下原因。(1)鐵磁性工件的尺寸決定了整個串聯諧振回路的等效電阻,尺寸越大,等效電阻越大。(2)回路空載和帶載時等效電阻差別巨大,如果空載時變比過低,將造成逆變橋瞬間燒毀。
T2是T1初級工作電流的取樣互感器,因為匝比為1:100,且負載電阻為100Ω,所以當電阻上電壓為1V時對應T1初級電流為1A。該互感器應有足夠小的漏感且易于制作,宜采用鐵氧體磁罐制作,如無磁罐也可用磁環代替。在調試電路時,可通過示波器檢測J3兩端電壓的波形形狀和幅度而了解電路的工作狀態,頻率,電流等參數,亦可作為過流保護的取樣點。
J1端子輸出諧振電容兩端的電壓信號,當電路諧振時,電容電壓與T1次級電壓存在90°相位差,將這個信號送入后續的PLL鎖相環,就可以自動調節時激勵頻率始終等于諧振頻率。且相位恒定。(后文詳述)
L1,T1 線圈均采用紫銅管制作,數據見上圖,工作中,線圈發熱嚴重,必須加入水冷措施以保證長時間安全工作。為保證良好的傳輸特性以及防止磁飽和,T1采用兩個 EE85磁芯疊合使用,在繞制線圈時需先用木板做一個比磁芯舌截面稍微大點的模子,在上面繞制好后脫模。如下圖:
PLL鎖相環部分:
上圖為PLL部分,是整個電路的核心。關于CD4046芯片的結構及工作原理等,我不在這里詳述,請自行查閱書籍或網絡。 以U1五端單片開關電源芯片LM2576-adj為核心的斬波穩壓開關電路為整個PLL板提供穩定的,功率強勁的電源。圖中參數可以提供15V2A的穩定電壓。因為采用15V的VDD電源,芯片只能采用CD40xx系列的CMOS器件,74系列的不能在此電壓下工作。
CD4046 鎖相環芯片的內部VCO振蕩信號從4腳輸出,一方面送到U2為核心的死區時間發生器,用以驅動后級電路。另一方面回饋到CD4046的鑒相器輸入B端口3 腳。片內VCO的頻率范圍由R16、R16、W1、C13的值共同決定,如圖參數時,隨著VCO控制電壓0-15V變化,振蕩頻率在20KHz- 80KHz之間變化。
從諧振槽路Vcap接口J1送進來的電壓信號從J4接口輸入PLL板,經過R14,D2,D3構成的鉗位電路后,送入 CD4046的鑒相器輸入A端口14腳。這里要注意的是,Vcap電壓的相位要倒相輸入,才能形成負反饋。D2,D3宜采用低結電容的檢波管或開關管如 1N4148、1N60之類。
C7、C12為CD4046的電源退耦,旁路掉電源中的高頻分量,使其穩定工作。
現在說說工作流程,我們選用的是CD4046內的鑒相器1(XOR異或門)。對于鑒相器1,當兩個輸人端信號Ui、Uo的電平狀態相異時(即一個高電平,一個為低電平),輸出端信號UΨ為高電平;反之,Ui、Uo電平狀態相同時(即兩個均為高,或均為低電平),UΨ輸出為低電平。當Ui、Uo的相位差Δφ在0°-180°范圍內變化時,UΨ的脈沖寬度m亦隨之改變,即占空比亦在改變。從比較器Ⅰ的輸入和輸出信號的波形(如圖4所示)可知,其輸出信號的頻率等于輸入信號頻率的兩倍,并且與兩個輸入信號之間的中心頻率保持90°相移。從圖中還可知,fout不一定是對稱波形。對相位比較器Ⅰ,它要求Ui、Uo的占空比均為50%(即方波),這樣才能使鎖定范圍為最大。如下圖。
由上圖可看出,當14腳與3腳之間的相位差發生變化時,2腳輸出的脈寬也跟著變化,2腳的PWM信號經過U4為核心的有源低通濾波器后得到一個較為平滑的直流電平,將這個直流電平作為VCO的控制電壓,就能形成負反饋,將VCO的輸出信號與14腳的輸入信號鎖定為相同頻率,固定相位差。
關于死區發生器,本電路中,以U2 CD4001四2輸入端與非門和外圍R8,R8,C10,C11共同組成,利用了RC充放電的延遲時間,將實時信號與延遲后的信號做與運算,得到一個合適的死區。死區時間大小由R8,R8,C10,C11共同決定。如圖參數,為1.6uS左右。在實際設計安裝的時候,C10或C11應使用68pF的瓷片電容與5-45pF的可調電容并聯,以方便調整兩組驅動波形的死區對稱性。 下圖清晰地展示了死區的效果。
關于圖騰輸出,從死區時間發生器輸出的電平信號,僅有微弱的驅動能力,我們必須將其輸出功率放大到一定程度才能有效地推動后續的GDT(門極驅動變壓器)部分,Q1-Q8構成了雙極性射極跟隨器,俗稱圖騰柱,將較高的輸入阻抗變換為極低的輸出阻抗,適合驅動功率負載。 R10.R11為上拉電阻,增強CD4001輸出的“1”電平的強度。有人會問設計兩級圖騰是否多余,我開始也這么認為,試驗時單用一級 TIP41,TIP42為圖騰輸出,測試后發現高電平平頂斜降帶載后比較嚴重,分析為此型號晶體管的hFE過低引起,增加前級8050/8550推動后,平頂斜降消失。 GDT門極驅動電路:
上圖為MOSFET的門極驅動電路,采用GDT驅動的好處就是即便驅動級出問題,也不可能出現共態導通激勵電平。留適當的死區時間,這個電路死區大到1.6uS。而且MOSFET開關迅速,沒有IGBT的拖尾,很難炸管。而且MOS的米勒效應小很多。電路處于ZVS狀態,管子2KW下工作基本不發熱,熱擊穿不復存在。
從 PLL板圖騰柱輸出的兩路倒相驅動信號,從GDT板的J1,J4接口輸入,經過C1-C4隔直后送入脈沖隔離變壓器T1-T4。R5,R6的存在,降低了隔直電容與變壓器初級的振蕩Q值,起到減少過沖和振鈴的作用。從脈沖變壓器輸出的±15V的浮地脈沖,通過R1-R4限流緩沖(延長對Cgs的充電時間,減緩開通斜率)后,齊納二極管ZD1-ZD8對脈沖進行雙向鉗位,最后經由J2,J3,J5,J6端子輸出到四個MOS管的GS極。這里因為關斷期間為 -15V電壓,即便有少量的電平抖動也不會使MOS管異常開通,造成共態導通。注意,J2,J3用以驅動一個對角的MOS管,J5,J6用于驅動另一個對角的mos管。 為了有效利用之前PLL板圖騰輸出的功率以及減小驅動板高度,這里采用4只脈沖變壓器分別對4支管子進行驅動。脈沖變壓器T1- T4均采用EE19磁芯,不開氣隙,初級次級均用0.33mm漆包線繞制30T,為提高繞組間耐壓起見,并未采用雙線并繞。而是先繞初級,用耐高溫膠帶3 層絕緣后再繞次級,采用密繞方式,注意圖中+,-號表示的同名端。C1-C4均采用CBB無極性電容。其余按電路參數。 電源部分:
上圖為母線電源部分,市電電壓經過自耦調壓器后從J2輸入,經過B1全波整流后送入C1-C4進行濾波。為了在MOS橋開關期間,保持母線電壓恒定(恒壓源),故沒有加入濾波電感。C1,C2為MKP電容,主要作用為全橋鉗位過程期間的逆向突波吸收。整流濾波后的脈動直流從 J1輸出。 全橋部分:
上圖為MOSFET橋電路,結構比較簡單,不再贅述。強調一下,各個MOS管的GS極到GDT板之間的引線,盡可能一樣長,但應小于10cm。必須采用雙絞線。MOS管的選取應遵循以下要求:開關時間小于100nS、耐壓高于500V、內部自帶阻尼二極管、電流大于 20A、耗散功率大于150W。
4.散熱系統
槽路部分的阻抗變換變壓器次級以及感應線圈部分,在滿功率輸出時,流經的電流達到500A之巨,如果沒有強有力的冷卻措施,將在短時間內過熱燒毀。
該系統宜采用水冷措施,利用銅管本身作為水流通路。泵采用隔膜泵,一是能自吸,二是壓力高。電路采用的是國產普蘭迪隔膜泵,輸出壓力達到0.6MPa,輕松在3mm內徑的銅管中實現大流量水冷。
5.組裝
按下圖組裝,注意GDT部分,輸出端口的1腳接G,2腳接S,雙絞線長度小于10cm。
6.調試
該電路的調試比較簡單,主要分以下幾個步驟進行。
6.1PLL板整體功能檢測。電路組裝好后,先斷開高壓電源,將PLL板JP1跳線的2,3腳短路,使VCO輸出固定頻率的方波。然后用示波器分別檢測四個MOS管的GS電壓,看是否滿足相位和幅度要求。對角的波形同相,同一臂的波形反相。幅度為±15V。如果此步驟無問題,進行下一步。如果波形相位異常,檢測雙絞線連接是否有誤。
6.2死區時間對稱性調整。用示波器監測同一臂的兩個MOS的GS電壓,調節PLL板C10或C11并聯的可調電容,使兩個MOS的GS電壓的高電平寬度基本一致即可。死區時間差異過大的話,容易造成在振蕩的前幾個周期內,就造成磁芯的累計偏磁而發生飽和炸管,隔直電容能減輕這一情況。
6.3VCO中心頻率調整。PLL環路中,VCO的中心頻率在諧振頻率附近時,能獲得最大的跟蹤捕捉范圍,因此有必要進行一個調整。槽路部分S1切換到上方觸點,PLL板JP1跳線的2,3腳短路,使VCO控制電壓處于0.5VCC,W2置于中點。通過自耦調壓器將高壓輸入調節在30VAC。用萬用表交流電流檔監測高壓輸入電流,同時用示波器監測槽路部分J3接口電壓,緩慢調節PLL板的W1,使J3電壓為標準正弦波。此時,電流表的示數也為最大值。這時諧振頻率與VCO中心頻率基本相等。 諧振時的波形如下圖,電流波形標準正弦波,與驅動波形滯后200nS左右。
6.4PLL鎖定調整。將PLL板JP1跳線的1,2腳短路,使VCO的電壓控制權轉交給鑒相濾波網絡。保持高壓輸入為30VAC,用示波器監測槽路部分J3接口電壓波形形狀和頻率。此時用改錐在±一圈范圍內調整W1,若示波器波形頻率保持不變,形狀仍然為良好的正弦波。則表示電路已近穩定入鎖,如果無法鎖定,交換槽路部分J1的接線再重復上述步驟。當看到電路鎖定后,在加熱線圈中放入螺絲刀桿,這時因為有較大的等效負載阻抗,波形幅度下降,但仍然保持良好的正弦波。如果此時失鎖,可微調W1保持鎖定。
6.5電流滯后角調整。電路鎖定后,用示波器同時監測槽路部分J3接口電壓以及PLL板GDT2或GDT1接口電壓,緩慢調節W2,使電流波形(正弦波)稍微落后于驅動電壓波形,此時全橋負載呈弱感性,并進入ZVS狀態。
6.6工件加熱測試,上述步驟均成功后,即可開始加熱工件。先放入工件,用萬用表電流檔監測高壓電流。緩慢提升自耦調壓器輸出電壓,可以看到工件開始發熱,應保證 220VAC高壓下,電流小于15A。這時功率達到2500W。當加熱體積較大的工件時,因為等效阻抗大,須將槽路部分S1切換至下方觸點。 至此,整個感應加熱電路調試完畢。開始感受高溫體驗吧。
評論
查看更多