OpenCV sample目錄下自帶兩個(gè)與相機(jī)標(biāo)定的cpp文件即:calibration.cpp和calibration_artificial.cpp
calibration.cpp 是通過用戶輸入可選參數(shù)進(jìn)行攝像機(jī)標(biāo)定的程序。
calibration_artificial.cpp 是程序模擬模擬攝像機(jī)標(biāo)定的過程,即程序創(chuàng)建棋盤然后自主標(biāo)定。
通常我們有兩種方式去標(biāo)定,一個(gè)是實(shí)時(shí)的從攝像機(jī)獲取拍攝到的棋盤進(jìn)行標(biāo)定,一個(gè)是已經(jīng)獲得了一些棋盤的圖片來標(biāo)定。
本文詳細(xì)介紹第二種,即用已獲得的棋盤圖片的整個(gè)過程。
方法一:編譯生成 .exe文件,然后在commond 窗口輸入?yún)?shù)執(zhí)行
方法二:通過添加輸入?yún)?shù)的代碼,然后執(zhí)行(可以單步調(diào)試)(推薦此方法)
calibration.cpp 和 calibration_artificial.cpp 位置如圖所示。此外,棋盤圖片也在同一目錄下
找到文件后,開始新建工程吧。不過在用以獲得的圖像來進(jìn)行標(biāo)定,應(yīng)先通過OpenCV自帶的imagelist_creator.cpp 產(chǎn)生一個(gè)xml或者yaml格式的圖像列表,然后在使用下面的程序。
第一步,新建項(xiàng)目demo,添加剛才那個(gè)目錄下的imagelist_creator.cpp 編譯執(zhí)行得到可執(zhí)行文件 demo.exe
第二步,執(zhí)行demo.exe 產(chǎn)生一個(gè)xml或者yaml格式的圖像列表
static void help(char** av)
{
cout 《《 “\nThis creates a yaml or xml list of files from the command line args\n”
“usage:\n./” 《《 av[0] 《《 “ imagelist.yaml *.png\n”
《《 “Try using different extensions.(e.g. yaml yml xml xml.gz etc.。。)\n”
《《 “This will serialize this list of images or whatever with opencv‘s FileStorage framework” 《《 endl;
}
輸入命令:demo imagelist.yaml left01.jpg left02.jpg left03.jpg left04.jpg left05.jpg left06.jpg left07.jpg left08.jpg left09.jpg left010.jpg left11.jpg left12.jpg left13.jpg left14.jpg right01.jpg right02.jpg right03.jpg right04.jpg right05.jpg right06.jpg right07.jpg right08.jpg right09.jpg right10.jpg right11.jpg right12.jpg right13.jpg right14.jpg ?;剀?,生成imagelist.yaml
第三步,進(jìn)行相機(jī)的標(biāo)定
先把14張棋盤圖片放到debug目錄下,然后移除imagelist_creator.cpp 添加 calibration.cpp ,如圖所示
編譯執(zhí)行,得到新的demo.exe ,進(jìn)入cmd ,輸入 demo -w 6 -h 9 imagelist.yaml 回車即可。如圖所示,開始對每張圖片進(jìn)行角點(diǎn)檢測
最后,得到一個(gè) out_camera_data.yml 文件
內(nèi)容如下:
%YAML:1.0
calibration_time: “08/21/15 16:54:26”
image_width: 640
image_height: 480
board_width: 6
board_height: 9
square_size: 1.
flags: 0
camera_matrix: ??!opencv-matrix
rows: 3
cols: 3
dt: d
data: [ 5.3765976500165073e+002, 0., 3.4011155767874686e+002, 0.,
5.3789341813113867e+002, 2.3694081464807104e+002, 0., 0., 1. ]
distortion_coefficients: ??!opencv-matrix
rows: 5
cols: 1
dt: d
data: [ -2.7762353155161251e-001, 5.3976467600878486e-002,
2.1257384355991209e-003, -3.9487502777272009e-004,
4.8679847473271927e-002 ]
avg_reprojection_error: 4.4034956116049290e-001
此時(shí),大功告成 =。=
//對于想自己單步調(diào)試的親,補(bǔ)充第二種方法,即通過添加代碼調(diào)試。
第一步:將圖片及imagelist放到 D:\Workspace\demo\demo目錄下
第二步: 添加代碼
具體過程如圖所示:
在該目錄下放入imagelist.yaml 和14張圖片
添加代碼
argc = 6;
argv[0] = “demo.exe”;
argv[1] = “-w”;
argv[2] = “6”;
argv[3] = “-h”;
argv[4] = “9”;
argv[5] = “imagelist.yaml”;
代碼
#include “stdafx.h”
#include “cv.h”
#include “highgui.h”
#include 《string》
#include 《iostream》
using namespace std;
int main()
{
int cube_length=7;
CvCapture* capture;
capture=cvCreateCameraCapture(0);
if(capture==0){
printf(“無法捕獲攝像頭設(shè)備!\n\n”);
return 0;
}else{
printf(“捕獲攝像頭設(shè)備成功?。n\n”);
}
IplImage* frame;
cvNamedWindow(“攝像機(jī)幀截取窗口”,1);
printf(“按“C”鍵截取當(dāng)前幀并保存為標(biāo)定圖片。。。\n按“Q”鍵退出截取幀過程。。。\n\n”);
int number_image=1;
char *str1;
str1=“.jpg”;
char filename[20]=“”;
while(true)
{
frame=cvQueryFrame(capture);
if(!frame)
break;
cvShowImage(“攝像機(jī)幀截取窗口”,frame);
if(cvWaitKey(10)==‘c’){
sprintf_s (filename,“%d.jpg”,number_image);
cvSaveImage(filename,frame);
cout《《“成功獲取當(dāng)前幀,并以文件名”《《filename《《“保存。。。\n\n”;
printf(“按“C”鍵截取當(dāng)前幀并保存為標(biāo)定圖片。。。\n按“Q”鍵退出截取幀過程。。。\n\n”);
number_image++;
}else if(cvWaitKey(10)==‘q’){
printf(“截取圖像幀過程完成。。。\n\n”);
cout《《“共成功截取”《《--number_image《《“幀圖像!!\n\n”;
break;
}
}
cvReleaseImage(&frame);
cvDestroyWindow(“攝像機(jī)幀截取窗口”);
IplImage * show;
cvNamedWindow(“RePlay”,1);
int a=1;
int number_image_copy=number_image;
CvSize board_size=cvSize(7,7);
int board_width=board_size.width;
int board_height=board_size.height;
int total_per_image=board_width*board_height;
CvPoint2D32f * image_points_buf = new CvPoint2D32f[total_per_image];
CvMat * image_points=cvCreateMat(number_image*total_per_image,2,CV_32FC1);
CvMat * object_points=cvCreateMat(number_image*total_per_image,3,CV_32FC1);
CvMat * point_counts=cvCreateMat(number_image,1,CV_32SC1);
CvMat * intrinsic_matrix=cvCreateMat(3,3,CV_32FC1);
CvMat * distortion_coeffs=cvCreateMat(5,1,CV_32FC1);
int count;
int found;
int step;
int successes=0;
while(a《=number_image_copy){
sprintf_s (filename,“%d.jpg”,a);
show=cvLoadImage(filename,-1);
found=cvFindChessboardCorners(show,board_size,image_points_buf,&count,
CV_CALIB_CB_ADAPTIVE_THRESH|CV_CALIB_CB_FILTER_QUADS);
if(found==0){
cout《《“第”《《a《《“幀圖片無法找到棋盤格所有角點(diǎn)!\n\n”;
cvNamedWindow(“RePlay”,1);
cvShowImage(“RePlay”,show);
cvWaitKey(0);
}else{
cout《《“第”《《a《《“幀圖像成功獲得”《《count《《“個(gè)角點(diǎn)。。。\n”;
cvNamedWindow(“RePlay”,1);
IplImage * gray_image= cvCreateImage(cvGetSize(show),8,1);
cvCvtColor(show,gray_image,CV_BGR2GRAY);
cout《《“獲取源圖像灰度圖過程完成。。。\n”;
cvFindCornerSubPix(gray_image,image_points_buf,count,cvSize(11,11),cvSize(-1,-1),
cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
cout《《“灰度圖亞像素化過程完成。。。\n”;
cvDrawChessboardCorners(show,board_size,image_points_buf,count,found);
cout《《“在源圖像上繪制角點(diǎn)過程完成。。。\n\n”;
cvShowImage(“RePlay”,show);
cvWaitKey(0);
}
if(total_per_image==count){
step=successes*total_per_image;
for(int i=step,j=0;j《total_per_image;++i,++j){
CV_MAT_ELEM(*image_points,float,i,0)=image_points_buf[j].x;
CV_MAT_ELEM(*image_points,float,i,1)=image_points_buf[j].y;
CV_MAT_ELEM(*object_points,float,i,0)=(float)(j/cube_length);
CV_MAT_ELEM(*object_points,float,i,1)=(float)(j%cube_length);
CV_MAT_ELEM(*object_points,float,i,2)=0.0f;
}
CV_MAT_ELEM(*point_counts,int,successes,0)=total_per_image;
successes++;
}
a++;
}
cvReleaseImage(&show);
cvDestroyWindow(“RePlay”);
cout《《“*********************************************\n”;
cout《《number_image《《“幀圖片中,標(biāo)定成功的圖片為”《《successes《《“幀。。。\n”;
cout《《number_image《《“幀圖片中,標(biāo)定失敗的圖片為”《《number_image-successes《《“幀。。。\n\n”;
cout《《“*********************************************\n\n”;
cout《《“按任意鍵開始計(jì)算攝像機(jī)內(nèi)參數(shù)。。。\n\n”;
CvCapture* capture1;
capture1=cvCreateCameraCapture(0);
IplImage * show_colie;
show_colie=cvQueryFrame(capture1);
CvMat * object_points2=cvCreateMat(successes*total_per_image,3,CV_32FC1);
CvMat * image_points2=cvCreateMat(successes*total_per_image,2,CV_32FC1);
CvMat * point_counts2=cvCreateMat(successes,1,CV_32SC1);
for(int i=0;i《successes*total_per_image;++i){
CV_MAT_ELEM(*image_points2,float,i,0)=CV_MAT_ELEM(*image_points,float,i,0);
CV_MAT_ELEM(*image_points2,float,i,1)=CV_MAT_ELEM(*image_points,float,i,1);
CV_MAT_ELEM(*object_points2,float,i,0)=CV_MAT_ELEM(*object_points,float,i,0);
CV_MAT_ELEM(*object_points2,float,i,1)=CV_MAT_ELEM(*object_points,float,i,1);
CV_MAT_ELEM(*object_points2,float,i,2)=CV_MAT_ELEM(*object_points,float,i,2);
}
for(int i=0;i《successes;++i){
CV_MAT_ELEM(*point_counts2,int,i,0)=CV_MAT_ELEM(*point_counts,int,i,0);
}
cvReleaseMat(&object_points);
cvReleaseMat(&image_points);
cvReleaseMat(&point_counts);
CV_MAT_ELEM(*intrinsic_matrix,float,0,0)=1.0f;
CV_MAT_ELEM(*intrinsic_matrix,float,1,1)=1.0f;
cvCalibrateCamera2(object_points2,image_points2,point_counts2,cvGetSize(show_colie),
intrinsic_matrix,distortion_coeffs,NULL,NULL,0);
cout《《“攝像機(jī)內(nèi)參數(shù)矩陣為:\n”;
cout《《CV_MAT_ELEM(*intrinsic_matrix,float,0,0)《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,0,1)
《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,0,2)
《《“\n\n”;
cout《《CV_MAT_ELEM(*intrinsic_matrix,float,1,0)《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,1,1)
《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,1,2)
《《“\n\n”;
cout《《CV_MAT_ELEM(*intrinsic_matrix,float,2,0)《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,2,1)
《《“ ”《《CV_MAT_ELEM(*intrinsic_matrix,float,2,2)
《《“\n\n”;
cout《《“畸變系數(shù)矩陣為:\n”;
cout《《CV_MAT_ELEM(*distortion_coeffs,float,0,0)《《“ ”《《CV_MAT_ELEM(*distortion_coeffs,float,1,0)
《《“ ”《《CV_MAT_ELEM(*distortion_coeffs,float,2,0)
《《“ ”《《CV_MAT_ELEM(*distortion_coeffs,float,3,0)
《《“ ”《《CV_MAT_ELEM(*distortion_coeffs,float,4,0)
《《“\n\n”;
cvSave(“Intrinsics.xml”,intrinsic_matrix);
cvSave(“Distortion.xml”,distortion_coeffs);
cout《《“攝像機(jī)矩陣、畸變系數(shù)向量已經(jīng)分別存儲在名為Intrinsics.xml、Distortion.xml文檔中\(zhòng)n\n”;
CvMat * intrinsic=(CvMat *)cvLoad(“Intrinsics.xml”);
CvMat * distortion=(CvMat *)cvLoad(“Distortion.xml”);
IplImage * mapx=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
IplImage * mapy=cvCreateImage(cvGetSize(show_colie),IPL_DEPTH_32F,1);
cvInitUndistortMap(intrinsic,distortion,mapx,mapy);
cvNamedWindow(“原始圖像”,1);
cvNamedWindow(“非畸變圖像”,1);
cout《《“按‘E’鍵退出顯示。。。\n\n”;
while(show_colie){
IplImage * clone=cvCloneImage(show_colie);
cvShowImage(“原始圖像”,show_colie);
cvRemap(clone,show_colie,mapx,mapy);
cvReleaseImage(&clone);
cvShowImage(“非畸變圖像”,show_colie);
if(cvWaitKey(10)==‘e’){
break;
}
show_colie=cvQueryFrame(capture1);
}
return 0;
}
評論
查看更多