現實的世界是一個擁有寬度、高度和深度的三維立體世界。在平面二維顯示技術已經成熟的今天,三維立體顯示技術首當其沖的成為了當今顯示技術領域的研究熱點。
本作品搭建了基于stm32f4的三維旋轉顯示平臺,它的顯示原理屬于三維顯示中的體三維顯示一類。它是通過適當方式來激勵位于透明顯示體內的物質,利用可見輻射光的產生三維體像素。當體積內許多方位的物質都被激勵后,便能形成由許多分散的體像素在三維空間內構成三維圖像。
體三維顯示又稱為真三維顯示,因為他所呈現的圖像在真實的三維空間中,展示一個最接近真實物體的立體畫面,可同時允許多人,多角度裸眼觀看場景,無序任何輔助眼鏡。
本作品的特點在于,利用stm32f4的浮點運算能力,實現了低成本的體三維顯示數據的生產,并利用類似分布式處理的系統結構,滿足了體三維顯示所需要的巨大數據吞吐量,等效吞吐量可達約300Mb/s
1.系統方案眾所周知人眼在接收被觀察物體的信息時,攜帶物體信息的光信號通過人眼細胞及神經傳入大腦神經,光的作用時間只是一個很短暫的時間段,當光的作用時間結束后,視覺影像并不會立即消失,這種殘留的視覺稱“后像”,視覺的這一現象則被稱為“視覺暫留”( duration of vision)物體在快速運動時, 當人眼所看到的影像消失后,人眼仍能繼續保留其影像0.1---0.4秒左右的圖像。在空間立體物體離散化的基礎上,再利用人眼視覺暫留效應,基于LED陣列的“三維體掃描”立體顯示系統便實現了立體顯示效果。如圖1所示,以顯示一個空心的邊長為單位1的正方體為例。LED顯示陣列組成的二維顯示屏即為正方體每個離散平面的顯示載體,LED顯示屏上的被點亮的LED即為正方體的平面離散像素。我們將該LED顯示平面置于軸對稱的角度機械掃描架構內,在嚴格機電同步的立體柱空間內進行各離散像素的尋址、賦值和激勵,由于機械掃描速度足夠快,便在人眼視覺上形成一個完整的正方體圖像。圖1(a)所示為立方體0度平面二維切片圖,圖1(b)所示為立方體45度平面二維切片圖,圖1(c)所示為立方體135度平面二維切片圖,圖1(d)所示為立方體180度平面二維切片圖,圖1(e)所示為觀看者觀察到的完整立方體顯示效果。
圖1
系統方案如圖2所示,整個系統由四個模塊組成,其中數據獲取單元主要由在PC上的上位機完成,利用3D-Max,OpenCV,OpenGL,將三維建模數據轉化成三維矢量表述文件,傳給由STM32F4 Discovery開發板構成的控制單元,利用其上的角度傳感器,結合wifi模塊或以太網模塊通過電力線模式傳給LED旋轉屏單元,其中的STM32F4負責將ASE文件解析成LED顯示陣列所需的點云數據流,通過串行總線傳輸給由FPGA驅動的LED顯示陣列,通過LED刷新速率與機械單元旋轉速率相匹配,從而實現體三維顯示的效果。
圖2
2.系統硬件設計系統的機械部分如圖3所示,顯示面板的硬件結構如圖4,圖5所示。本系統的底部是直流電機和碳刷,直流電機主要負責帶動上層的顯示屏幕高速旋轉,而碳刷則負責傳遞能量和通信信號。在顯示屏幕的正面是由96*128構成的三色LED點陣,FPGA的PWM信號通過驅動芯片控制三色LED從而實現真彩顯示。在屏幕背面由多塊STM32F4,SD卡,FIFO構成,主要負責解析由控制單元傳過來的ASE文件,并實時生成體三維顯示數據,并傳給LED燈板的驅動FPGA,并通過其實現最終的圖像顯示。
圖3
圖4
圖5
3.系統軟件設計3.1軟件控制流程:
3.2關于實時生成體三維顯示數據的討論:
一個瓦片64*32
LED層FPGA*8:每個16*16LED
中間層stm32*2:每個4LED層的FPGA,也即32*32
由于經過壓縮,一個led數據為4bits
所以一個stm32每一幀所要生成的數據為32*32*0.5bytes = 512bytes
轉速800轉,一幀1/800s = 1.25ms = 1250000ns
stm32f4主頻168Mhz,指令周期 = 5.93ns
約可執行20萬多條指令
假設fsmc總線的速度為50Mhz,則每幀寫入的時間大概在0.02ms內
程序總體思路
事先算出所有電子幀上非零的點,以及連續0的個數,在每一個電子幀同步后,算出生成下一幀的數據,寫入fifo
輸入:線段端點的集合
//input: endpoints of segments which formed the outline of a 3D model
//x position with range 0-95
//y position with range 0-95
//z position with range 0-128
/******************************************/
//from later discussion, one of the Q format
//type should replace the char type
/******************************************/
struct Coordinate_3D
{
_iq xPosition;
_iq yPosition;
_iq zPosition;
};
//after you get the intersection points in 3d coordinate, you need to remap it into 2d coordinate on the very electrical plane,
//and the conversion is quite simple Coordinate_2D.yPosition = Coordinate_3D.zPosition; Coordinate_2D.xPosition = sqrt(xPosition^2+yPosition^2)
struct Coordinate_2D
{
char xPosition;
char yPosition;
};
struct Line
{
struct Coordinate_3D beginPoint;
struct Coordinate_3D endPoint;
unsigned char color;
};
//frame structure to store the visible points in one electrical frame
//need to be discussed
//here's the prototype of the Frame structure, and basically the frame struture should contain the visible points,
//and the zero points. As we have enclosed the number of zero points after each visible points in their own data structure,
//only the number of zero points at the beginning of the whole frame should be enclosed in the frame struture
struct Frame
{
int zerosBefore;
PointQueue_t visiblePointQueue;
};
//we need a union structure like color plane with bit fields to store the color imformation of every four FPGAs in one data segment
//actually, it's a kind of frustrateing thing that we had to rebind the data into such an odd form.
union ColorPalette
{
struct
{
unsigned char color1 : 4;
unsigned char color2 : 4;
unsigned char color3 : 4;
unsigned char color3 : 4;
}distributedColor;
unsigned short unionColor;
};
//and now we need a complete point structure to sotre all the imformation above
//here we add a weight field = yPosition*96 + xPosition, which will facilitate
//our sort and calculation of the zero points number between each visible point
//it's important to understand that, 4 corresponding points on the LED panel
//will share one visiblepoint data structure.(一塊stm32負責4塊16*16的LED,每塊對應的點的4位顏色信息,拼成16位的數據段)
struct VisiblePoint
{
struct Coordinate_2D coord;
union Colorplane ColorPalette;
int weight;
int zerosAfter;
};
//as now you can see, we need some thing to store the visible points array
typedef struct QueueNode
{
struct VisiblePoint pointData;
struct QueueNode * nextNode;
}QueueNode_t, *QueueNode_ptr;
typedef struct
{
QueueNode_ptr front;
QueueNode_ptr rear;
}PointQueue_t;
//finally, we will have 16*16 words(16 bits)to write into the fifo after each electrial frame sync cmd.
//it may hard for us to decide the frame structure now, let's see how will the work flow of the algorithm be.
//firstly, the overall function will be like this
void Real3DExt(struct Line inputLines[], int lineNumber, struct Frame outputFrames[])
//then we need some real implementation function to calculate the intersection points
//with 0 = no intersection points, 1 = only have one intersection points, 2 = the input line coincides the given electrical plane
//2 need to be treated as an exception
//the range of the degree is 0-359
//it's important to mention that each intersection point we calculate, we need to
//remap its coordinate from a 32*32 field to x,y = 0-15, as each stm32 only have a 32*32
//effective field(those intersection points out of this range belong to other stm32), which can be decided by its address
int InterCal(struct Line inputLine, struct VisiblePoint * outputPoint, int degree)
//so we will need something like this in the Real3DExt function:
for (int j = 0; j < 360; j++)
{
for(int i = 0; i < lineNumber; i++ )
InterCal(struct Line inputLine, struct VisiblePoint outputPoint, int degree);
......
}
/******************************************/
//simple float format version of InterCal
/******************************************/
//calculate formula
//Q = [-1,1,-1];
//P = [1,1,-1];
//V = Q - p = [-2,0,0];
//Theta = pi/6;
//Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);
//Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);
//Result = Q - (Tmp0/Tmp1)*V
float32_t f32_point0[3] = {-1.0f,1.0f,-1.0f};
float32_t f32_point1[3] = {1.0f,1.0f,-1.0f};
float32_t f32_directionVector[3], f32_normalVector[3], f32_theta,
f32_tmp0, f32_tmp1, f32_tmp2, f32_result[3];
arm_sub_f32(f32_point0,f32_point1,f32_directionVector,3);
f32_theta = PI/6.0f;
f32_normalVector[0] = arm_sin_f32(f32_theta);
f32_normalVector[1] = arm_cos_f32(f32_theta);
f32_normalVector[2] = 0.0f;
arm_dot_prod_f32(f32_point0, f32_normalVector, 3, &f32_tmp0);
arm_dot_prod_f32(f32_directionVector, f32_normalVector, 3, &f32_tmp1);
f32_tmp2 = f32_tmp0/f32_tmp1;
arm_scale_f32(f32_normalVector, f32_tmp2, f32_normalVector, 3);
arm_sub_f32(f32_point0, f32_normalVector, f32_result, 3);
//and than we need to decide whether to add a new visible point in the point queue, or to update
//the color field of a given point in the point queue(as 4 visible point share one data structure). from this point, you will find that, it may be
//sensible for you not to diretly insert a new point into the end of point queue but to insert it in order
//when you build the pointqueue. it seems more effective.
void EnPointQueue(PointQueue_t * inputQueue, QueueNode_t inputNode);
//finally we will get an sorted queue at the end of the inner for loop
//than we need to calculate the number of invisible points between these visible points
//and to store it in each frame structure. the main purpose to do so is to offer an quick generation
//of the blank point(color field = 16'b0) between each electrical frame
//the work flow will be like this:
loop
{
dma output of the blank points;
output of the visible points;
}
/******************************************/
//some points need more detailed discussion
/******************************************/
//1.memory allocation strategy
//a quite straight forward method will be establishing a big memnory pool in advance, but the drawback of this method
//is that it's hard for you to decide the size of the memory pool. Another way would be the C runtime library method,
// and you can use build-in function malloc to allocate the memory, but it will be a quite heavy load for the m3 cpu
// as you need dynamic memeory allocation throughout the algorithm.
//2.the choice of Q format of the IQMATH library
//from the discussion above, the range of the coordnate is about 1-100, but the range of sin&cos is only 0-1,so there's a large gap between them.
//may be we can choose iq24?? Simultaneously, another big problem will be the choice between IQMATH and arm dsp library as their q format is
//incompatible with each other. as far as my knowledge is concerned, we should choose IQMATH with m3 without fpu, and cmsis dsp library with m4 with fpu.
//more detail discussion about the range of the algorithm
//x,y range is -64 to 64
//the formula is
//Tmp0 = Q(1)*sin(Theta) - Q(2)*cos(Theta);
//Tmp0 range is -128 to 128
//Tmp1 = V(1)*sin(Theta) - V(2)*cos(Theta);
//Tmp1 range is -128 to 128
//Result = Q - (Tmp1/Tmp2)*V
//because the minimal precision of the coordinate is 1, so if the result of Tmp1/Tmp2 is bigger than 128, the Result will be
//saturated. With the same reson, if (Tmp1/Tmp2)*V >= 128 or <= -127, the result will be saturated
4.系統創新
評論
查看更多