U-Boot
U-Boot,全稱 Universal Boot Loader,是遵循GPL條款的開放源碼項目。U-Boot的作用是系統引導。U-Boot從FADSROM、8xxROM、PPCBOOT逐步發展演化而來。其源碼目錄、編譯形式與Linux內核很相似,事實上,不少U-Boot源碼就是根據相應的Linux內核源程序進行簡化而形成的,尤其是一些設備的驅動程序,這從U-Boot源碼的注釋中能體現這一點。
U-Boot不僅僅支持嵌入式Linux系統的引導,它還支持NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS, android嵌入式操作系統。其目前要支持的目標操作系統是OpenBSD, NetBSD, FreeBSD,4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks, LynxOS, pSOS, QNX, RTEMS, ARTOS, android。這是U-Boot中Universal的一層含義,另外一層含義則是U-Boot除了支持PowerPC系列的處理器外,還能支持MIPS、 x86、ARM、NIOS、XScale等諸多常用系列的處理器。
這兩個特點正是U-Boot項目的開發目標,即支持盡可能多的嵌入式處理器和嵌入式操作系統。就目前來看,U-Boot對PowerPC系列處理器支持最為豐富,對Linux的支持最完善。其它系列的處理器和操作系統基本是在2002年11 月PPCBOOT改名為U-Boot后逐步擴充的。從PPCBOOT向U-Boot的順利過渡,很大程度上歸功于U-Boot的維護人德國DENX軟件工程中心Wolfgang Denk[以下簡稱W.D]本人精湛專業水平和執著不懈的努力。當前,U-Boot項目正在他的領軍之下,眾多有志于開放源碼BOOT LOADER移植工作的嵌入式開發人員正如火如荼地將各個不同系列嵌入式處理器的移植工作不斷展開和深入,以支持更多的嵌入式操作系統的裝載與引導。
uboot啟動流程分析
可知程序的入口在_start,在SourceInsight中查找可發現程序的入口_start在u-boot-2016.05\arch\arm\lib\vectors.S中。
。。。
ENTRY(_start)
SECTIONS
{
。。。
。 = 0x00000000;
。 = ALIGN(4);
.text :
{
*(.__image_copy_start)
*(.vectors)
CPUDIR/start.o (.text*)
*(.text*)
}
。。。
。 = ALIGN(4);
.rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
。 = ALIGN(4);
.data : {
*(.data*)
}
。 = ALIGN(4);
。 = 。;
。。。
.bss_start __rel_dyn_start (OVERLAY) : {
KEEP(*(.__bss_start));
__bss_base = 。;
}
.bss __bss_base (OVERLAY) : {
*(.bss*)
。 = ALIGN(4);
__bss_limit = 。;
}
.bss_end __bss_limit (OVERLAY) : {
KEEP(*(.__bss_end));
}
。。。
}
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
進入boot-2016.05\arch\arm\lib\vectors.S中,可以看到從_start開始后就跳轉到reset去執行:
。。。
.globl _start
。。。
_start:
#ifdef CONFIG_SYS_DV_NOR_BOOT_CFG
.word CONFIG_SYS_DV_NOR_BOOT_CFG
#endif
b reset
ldr pc, _undefined_instruction
ldr pc, _software_interrupt
ldr pc, _prefetch_abort
ldr pc, _data_abort
ldr pc, _not_used
ldr pc, _irq
ldr pc, _fiq
。。.12345678910111213141516171819202122
1、從u-boot-2016.05\arch\arm\cpu\arm920t\start.S中reset執行
主要執行流程:reset -》 cpu_init_crit -》 lowlevel_init -》 _main
reset:
。。。
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
bl cpu_init_crit
#endif
bl _main
。。。
#ifndef CONFIG_SKIP_LOWLEVEL_INIT
cpu_init_crit:
。。。
bl lowlevel_init
。。。
#endif /* CONFIG_SKIP_LOWLEVEL_INIT */
1234567891011121314151617181920212223
2、由bl _main跳轉到u-boot-2016.05\arch\arm\lib\crt0.S中從入口_main開始執行
主要執行流程:board_init_f -》 relocate_code -》 board_init_r
ENTRY(_main)
。。。
bl board_init_f_alloc_reserve
。。。
bl board_init_f_init_reserve
。。。
bl board_init_f
#if ! defined(CONFIG_SPL_BUILD)
。。。
b relocate_code
。。。
#endif
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_FRAMEWORK)
。。。
#if defined(CONFIG_SYS_THUMB_BUILD)
。。。
#else
ldr pc, =board_init_r
#endif
#endif
ENDPROC(_main)123456789101112131415161718192021222324252627282930313233
這部分有三點說明:
?、拧-boot-2016.05\common\board_f.c:board_init_f通過initcall_run_list(init_sequence_f)函數執行一系列初始化函數以實現前半部分板級初始化。全局結構體gd在u-boot-2016.05\arch\arm\include\asm\global_data.h中聲明:
#define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm (“r9”)1
?、?、u-boot-2016.05\arch\arm\lib\relocate.S:relocate_code實現uboot代碼的重定位,此部分如果覺得源代碼不是簡單明了可自己改寫。
?、?、去重定位uboot有兩種路徑:
一種是將gd-》flags設為0,在初始化函數序列init_sequence_f中的jump_to_copy函數中去跳轉到relocate_code:
static int jump_to_copy(void)
{
if (gd-》flags & GD_FLG_SKIP_RELOC)
return 0;
。。。
#if defined(CONFIG_X86) || defined(CONFIG_ARC)
。。。
#else
relocate_code(gd-》start_addr_sp, gd-》new_gd, gd-》relocaddr);
#endif
return 0;
}1234567891011121314
另一種就是不宏定義CONFIG_SPL_BUILD,然后在u-boot-2016.05\arch\arm\lib\crt0.S中通過
#if ! defined(CONFIG_SPL_BUILD)
。。。
b relocate_code
。。。
#endif123456789
來跳轉到relocate_code。以上兩種方法選其一,另一種就得去掉。
3、在上一步通過ldr pc, =board_init_r指令進入u-boot-2016.05\common\board_r.c:board_init_r函數,進而調用initcall_run_list(init_sequence_r)函數執行一系列初始化函數以實現后半部分板級初始化,并在initcall_run_list函數里進入run_main_loop不再返回。
void board_init_r(gd_t *new_gd, ulong dest_addr)
{
。。。
if (initcall_run_list(init_sequence_r))
hang();
/* NOTREACHED - run_main_loop() does not return */
hang();
}
1234567891011
init_sequence_r是一個函數指針數組,里面存放了很多初始化函數指針,里面有兩個重要的函數指針initr_announce和run_main_loop:
init_fnc_t init_sequence_r[] = {
。。。
initr_announce,
。。。
run_main_loop,
};12345678910
initr_announce函數聲明從此處開始程序就將跳轉到RAM中運行:
static int initr_announce(void)
{
debug(“Now running in RAM - U-Boot at: %08lx\n”, gd-》relocaddr);
return 0;
}12345
最后一項是run_main_loop ,進入run_main_loop 后便不再返回。
4、在run_main_loop 里會進入u-boot-2016.05\common\main.c:main_loop函數
static int run_main_loop(void)
{
。。。
for (;;)
main_loop();
return 0;
}12345678
進入main_loop之前就已經完成初始化,接下來準備去處理命令
/* We come here after U-Boot is initialised and ready to process commands */
void main_loop(void)
{
const char *s;
bootstage_mark_name(BOOTSTAGE_ID_MAIN_LOOP, “main_loop”);
。。。
/* get environment_variable: s = getenv(“bootcmd”); -》 bootcmd */
s = bootdelay_process();
。。。
autoboot_command(s);
。。。
}123456789101112131415161718
main_loop函數里有兩個重要的過程:
?、?、首先在bootdelay_process函數里通過s = getenv(“bootcmd”)得到bootcmd參數并返回bootcmd參數,
const char *bootdelay_process(void)
{
char *s;
int bootdelay;
。。。
s = getenv(“bootdelay”);
。。。
debug(“### main_loop entered: bootdelay=%d\n\n”, bootdelay);
。。。
s = getenv(“bootcmd”);
。。。
stored_bootdelay = bootdelay;
return s;
}1234567891011121314151617181920212223
其中,bootcmd參數通過以下方式指定:
先在u-boot-2016.05\include\env_default.h中
#ifdef CONFIG_BOOTCOMMAND
“bootcmd=” CONFIG_BOOTCOMMAND “\0”
#endif123
再在u-boot-2016.05\include\configs\smdk2440.h中指定
#define CONFIG_BOOTCOMMAND “nand read 30000000 kernel;bootm 30000000”1
⑵、然后進入autoboot_command函數,并將bootcmd參數傳入,繼而進入run_command_list函數,繼續將bootcmd參數傳入
void autoboot_command(const char *s)
{
。。。
if (stored_bootdelay != -1 && s && !abortboot(stored_bootdelay)) {
。。。
run_command_list(s, -1, 0);
。。。
}
。。。
}
123456789101112
5、從autoboot_command函數進入u-boot-2016.05\common\cli.c:run_command_list函數后,接著會調用board_run_command函數去執行命令
int run_command_list(const char *cmd, int len, int flag)
{
int need_buff = 1;
char *buff = (char *)cmd; /* cast away const */
int rcode = 0;
if (len == -1) {
len = strlen(cmd);
#ifdef CONFIG_SYS_HUSH_PARSER
。。。
#else
/* the built-in parser will change our string if it sees \n */
need_buff = strchr(cmd, ‘\n’) != NULL;
#endif
}
if (need_buff) {
buff = malloc(len + 1);
if (!buff)
return 1;
memcpy(buff, cmd, len);
buff[len] = ‘\0’;
}
#ifdef CONFIG_SYS_HUSH_PARSER
。。。
#ifdef CONFIG_CMDLINE
。。。
#else
rcode = board_run_command(buff);
#endif
#endif
。。。
}1234567891011121314151617181920212223242526272829303132
那么,board_run_command如何去執行命令?
首先,board_run_command函數通過bootcmd參數中的bootm命令找到u-boot-2016.05\cmd\bootm.c中的
U_BOOT_CMD(
bootm, CONFIG_SYS_MAXARGS, 1, do_bootm,
“boot application image from memory”, bootm_help_text
?。?1234
然后,根據這個信息找到執行bootm命令的處理函數指針do_bootm,并進入do_bootm函數執行相關代碼,而U_BOOT_CMD在u-boot-2016.05\include\command.h中定義:
#define U_BOOT_CMD(_name, _maxargs, _rep, _cmd, _usage, _help) \
U_BOOT_CMD_COMPLETE(_name, _maxargs, _rep, _cmd, _usage, _help, NULL)12
#define U_BOOT_CMD_COMPLETE(_name, _maxargs, _rep, _cmd, _usage, _help, \
_comp) \
_CMD_REMOVE(sub_ ## _name, _cmd)123
#define _CMD_REMOVE(_name, _cmd) \
int __remove_ ## _name(void) \
{ \
if (0) \
_cmd(NULL, 0, 0, NULL); \
return 0; \
}1234567
在此,board_run_command函數還會將bootm命令中的參數(內核映像所在地址)30000000賦給bootm_headers_t結構體變量images,則images首地址就是30000000,images在u-boot-2016.05\cmd\bootm.c中定義:
bootm_headers_t images; 1
評論
查看更多