作者:郭斌、劉思聰、王琰、李志剛、於志文 周興社
智能物聯(lián)網(wǎng)是當(dāng)前人工智能與物聯(lián)網(wǎng)技術(shù)相融合的產(chǎn)物,正成長(zhǎng)為一個(gè)具有廣泛發(fā)展前景的新興前沿領(lǐng) 域,實(shí)現(xiàn)從“萬(wàn)物互聯(lián)”到“萬(wàn)物智聯(lián)”的演進(jìn). 在人工智能、邊緣計(jì)算、物聯(lián)網(wǎng)、移動(dòng)嵌入式硬件等技術(shù)發(fā)展 背景下,本文系統(tǒng)性地介紹智能物聯(lián)網(wǎng)這一新興方向. 它對(duì)物聯(lián)網(wǎng)感知、通信、計(jì)算和應(yīng)用通過(guò)人工智能技術(shù)賦 能,呈現(xiàn)泛在智能感知、云邊端協(xié)同計(jì)算、分布式機(jī)器學(xué)習(xí)、人機(jī)物融合等新特征,具有更高靈活性、自組織性、 自適應(yīng)性. 本文首先介紹了智能物聯(lián)網(wǎng)的基本概念特質(zhì);其次闡述了智能物聯(lián)網(wǎng)的體系架構(gòu);進(jìn)一步詳細(xì)介紹了 智能物聯(lián)網(wǎng)中的研究挑戰(zhàn)與關(guān)鍵技術(shù),包括泛在智能感知、群智感知計(jì)算、智能物聯(lián)網(wǎng)通信、終端適配深度計(jì)算、 物聯(lián)網(wǎng)分布式學(xué)習(xí)、云邊端協(xié)同計(jì)算、安全與隱私保護(hù);最后,基于最新研究動(dòng)態(tài)展望了極具潛力的未來(lái)研究方 向,包括軟硬協(xié)同終端智能、面向 AIoT 的智能演進(jìn)、新一代智能物聯(lián)網(wǎng)絡(luò)、動(dòng)態(tài)場(chǎng)景模型持續(xù)演化、人機(jī)物融 合群智計(jì)算和通用 AIoT 系統(tǒng)平臺(tái).
物聯(lián)網(wǎng)(Internet of Things,IoT),即“萬(wàn)物 相連的互聯(lián)網(wǎng)”,被認(rèn)為是繼計(jì)算機(jī)、互聯(lián)網(wǎng)之后的 又一次信息產(chǎn)業(yè)浪潮,是新一代信息技術(shù)的重要組 成部分. 它是在互聯(lián)網(wǎng)基礎(chǔ)上進(jìn)一步延伸和擴(kuò)展的 網(wǎng)絡(luò),將各種信息傳感設(shè)備與網(wǎng)絡(luò)結(jié)合起來(lái)而形成 的一個(gè)巨大網(wǎng)絡(luò),實(shí)現(xiàn)任何時(shí)間、任何地點(diǎn),人、 機(jī)、物的互聯(lián)互通、信息交換與智能服務(wù). 萬(wàn)物互 聯(lián)是人類科技史上的又一次重大革命,對(duì)社會(huì)生產(chǎn) 及生活產(chǎn)生了巨大而深遠(yuǎn)的影響. 自誕生以來(lái),物聯(lián)網(wǎng)技術(shù)的飛速發(fā)展不斷引領(lǐng) 產(chǎn)業(yè)升級(jí),同時(shí)對(duì)其技術(shù)的演進(jìn)提出了更高的要求. 具體來(lái)講,有五個(gè)重要的發(fā)展趨勢(shì).?
一是物聯(lián)網(wǎng)終端設(shè)備大規(guī)模普及,導(dǎo)致終端數(shù) 據(jù)和連接出現(xiàn)井噴式增長(zhǎng). 根據(jù)華為 GIV(全球產(chǎn) 業(yè)展望)①和思科②預(yù)測(cè),到 2025 年全球連接的設(shè)備 數(shù)將達(dá)到 1000 億臺(tái),而到 2030 年將有超過(guò) 5000 億 物聯(lián)網(wǎng)設(shè)備接入互聯(lián)網(wǎng),屆時(shí)全球每年產(chǎn)生的數(shù)據(jù) 總量達(dá) 1YB,相比 2020 年,增長(zhǎng) 23 倍. 海量數(shù)據(jù) 連接需要計(jì)算能力更高的物聯(lián)網(wǎng)體系架構(gòu)以實(shí)現(xiàn)數(shù) 據(jù)的及時(shí)分析和處理.
二是數(shù)據(jù)處理的實(shí)時(shí)性、隱私性要求更為迫切. 新的物聯(lián)網(wǎng)業(yè)務(wù)不斷衍生,萬(wàn)物感知、萬(wàn)物互聯(lián)帶 來(lái)的數(shù)據(jù)洪流將與各產(chǎn)業(yè)深度融合,催生產(chǎn)業(yè)物聯(lián) 網(wǎng)的興起. 許多特殊的領(lǐng)域應(yīng)用場(chǎng)景,如安防監(jiān)測(cè)、自動(dòng)駕駛、在線醫(yī)療等,一方面對(duì)數(shù)據(jù)的實(shí)時(shí)性要 求較高,需要較低的數(shù)據(jù)傳輸時(shí)延,另一方面因?yàn)?逐步與人們的日常生活深度融合,對(duì)隱私性保護(hù)的 要求也極為迫切.?
三是深度學(xué)習(xí)等人工智能技術(shù)的興起.?近年 來(lái),以深度學(xué)習(xí)為代表的新一代人工智能技術(shù)快速 發(fā)展. 相比傳統(tǒng)機(jī)器學(xué)習(xí)模型,深度學(xué)習(xí)在很多領(lǐng) 域任務(wù)上都取得了更好的性能結(jié)果. 但同時(shí),隨著 網(wǎng)絡(luò)層數(shù)的增加,其模型參數(shù)規(guī)模不斷變大,計(jì)算 成本不斷提高,為其在物聯(lián)網(wǎng)環(huán)境的部署和執(zhí)行帶 來(lái)了很大挑戰(zhàn).?
四是物聯(lián)網(wǎng)終端計(jì)算能力不斷提升. 傳統(tǒng)物聯(lián) 網(wǎng)終端主要負(fù)責(zé)數(shù)據(jù)的采集與傳輸,而隨著智能芯 片、嵌入式處理器、感知設(shè)備等的不斷發(fā)展和小型化,終端設(shè)備被不斷賦予了智能數(shù)據(jù)處理能力,能 在成本約束下完成部分?jǐn)?shù)據(jù)處理和智能推理任務(wù), 可以為提升計(jì)算的實(shí)時(shí)性和保護(hù)數(shù)據(jù)隱私性提供 支撐.?
五是邊緣計(jì)算和邊緣智能的興起. 邊緣計(jì)算是 指在用戶或數(shù)據(jù)源的物理位置或附近進(jìn)行的計(jì)算, 能就近提供邊緣智能數(shù)據(jù)處理服務(wù),這樣可以降低 延遲,節(jié)省帶寬. 邊緣計(jì)算的興起進(jìn)一步提升了 本地?cái)?shù)據(jù)處理能力. Gartner 將邊緣計(jì)算列為 2020 年 十大戰(zhàn)略技術(shù)趨勢(shì)之一③,其誕生解決了智能物聯(lián)網(wǎng) 發(fā)展的瓶頸問(wèn)題.
綜上,傳統(tǒng)物聯(lián)網(wǎng)架構(gòu)的處理和計(jì)算能力已不足以支撐物聯(lián)網(wǎng)絡(luò)的深度覆蓋、海量連接、實(shí)時(shí)處理和智能計(jì)算等需求,在終端智能及邊緣計(jì)算等發(fā) 展背景下,智能物聯(lián)網(wǎng)(Artificial Intelligence of Things, AIoT,一般也表示為 AI+IoT 或人工智能物 聯(lián)網(wǎng))作為未來(lái)物聯(lián)網(wǎng)發(fā)展的新趨勢(shì)近年來(lái)得到 廣泛關(guān)注. 智能物聯(lián)網(wǎng)是 2017 年興起的概念①,是人工智 能與物聯(lián)網(wǎng)技術(shù)相融合的產(chǎn)物,正成長(zhǎng)為一個(gè)具有 廣泛發(fā)展前景的新興前沿領(lǐng)域,實(shí)現(xiàn)從“萬(wàn)物互聯(lián)” 到“萬(wàn)物智聯(lián)”的演進(jìn). 據(jù) Gartner 預(yù)測(cè),未來(lái)超過(guò) 75%的數(shù)據(jù)需要在網(wǎng)絡(luò)邊緣側(cè)分析、處理與存儲(chǔ). AIoT 首先通過(guò)各種傳感器聯(lián)網(wǎng)實(shí)時(shí)采集各類數(shù)據(jù) (環(huán)境數(shù)據(jù)、運(yùn)行數(shù)據(jù)、業(yè)務(wù)數(shù)據(jù)、監(jiān)測(cè)數(shù)據(jù)等), 進(jìn)而在終端設(shè)備、邊緣設(shè)備或云端通過(guò)數(shù)據(jù)挖掘和 機(jī)器學(xué)習(xí)方法進(jìn)行智能化處理和理解. 近年來(lái),智 能物聯(lián)網(wǎng)應(yīng)用已逐步融入國(guó)家重大需求和民生的各 個(gè)領(lǐng)域,例如智慧城市、智能制造、社會(huì)治理等.
智能物聯(lián)網(wǎng)帶來(lái)了泛在智能感知、情境自適應(yīng) 通信、分布式群體智能、云邊端協(xié)同計(jì)算等新的挑戰(zhàn)問(wèn)題. 來(lái)自麻省理工學(xué)院、斯坦福大學(xué)、耶魯大 學(xué)、加州大學(xué)伯克利分校、劍橋大學(xué),以及國(guó)內(nèi)的 研究人員都對(duì)智能物聯(lián)網(wǎng)這一前沿領(lǐng)域開展了系統(tǒng) 性研究. 例如,麻省理工學(xué)院研究人員對(duì)資源受限 物聯(lián)網(wǎng)終端上的深度模型壓縮等技術(shù)進(jìn)行了系統(tǒng)性 研究. 耶魯大學(xué)研究人員提出了邊端協(xié)同高效深 度推理模型. 斯坦福大學(xué)研究團(tuán)隊(duì)基于多智能體 深度強(qiáng)化學(xué)習(xí)對(duì)智能體間的分布式協(xié)作學(xué)習(xí)能力進(jìn) 行了研究. 劍橋大學(xué)研究人員就資源受限環(huán)境下 深度學(xué)習(xí)模型的輕量級(jí)自動(dòng)搜索提出了新的方法. 香港理工大學(xué)研究人員則對(duì)車聯(lián)網(wǎng)背景下邊緣智能 計(jì)算的應(yīng)用進(jìn)行了深入分析和探索.?
在 AIoT 快速發(fā)展趨勢(shì)下,國(guó)內(nèi)外著名 IT 企業(yè) 都加緊布局,在邊緣智能、智能芯片、智能物聯(lián)網(wǎng) 軟件平臺(tái)等方面取得了很多基礎(chǔ)性成果. 微軟在 2015 年正式發(fā)布了 Azure 物聯(lián)網(wǎng)套件——Azure IoT Suite②. 2021 年,又進(jìn)一步發(fā)布全新的邊緣計(jì)算平臺(tái) Azure Edge Zone 以支持實(shí)時(shí)數(shù)據(jù)處理. 亞馬遜也于 2015 率先發(fā)布 AWS IoT③平臺(tái),并于 2017 年推出 FreeRTOS 操作系統(tǒng),適用于小型低功耗的邊緣設(shè)備 進(jìn)行編程、部署、連接與管理. 2018 年,阿里巴巴 推出 AliOS Things④物聯(lián)網(wǎng)操作系統(tǒng),提供 IoT 連接、智能處理、云邊端協(xié)同計(jì)算等服務(wù). 同年,京東發(fā) 布“城市計(jì)算平臺(tái)”,結(jié)合深度學(xué)習(xí)等構(gòu)建時(shí)空關(guān)聯(lián) 模型及學(xué)習(xí)算法解決交通規(guī)劃、火力發(fā)電、環(huán)境保 護(hù)等城市不同場(chǎng)景下的智能應(yīng)用問(wèn)題. 2019 年,華 為推出了面向物聯(lián)網(wǎng)的華為鴻蒙操作系統(tǒng) HarmonyOS⑤,這是一種基于微內(nèi)核、面向 5G 的全 場(chǎng)景分布式操作系統(tǒng),在傳統(tǒng)的單設(shè)備系統(tǒng)能力基 礎(chǔ)上,提出了基于同一套系統(tǒng)能力、適配多種終端 形態(tài)的分布式理念. 綜上,無(wú)論在學(xué)術(shù)界和產(chǎn)業(yè)界,智能物聯(lián)網(wǎng)均 成為新的發(fā)展趨勢(shì). 鑒于此,本文將面向泛在計(jì)算、 人工智能與物聯(lián)網(wǎng)交叉學(xué)術(shù)前沿,闡述其基本概念、 體系架構(gòu)、關(guān)鍵技術(shù)及典型應(yīng)用,并在此基礎(chǔ)上探 索其未來(lái)科學(xué)挑戰(zhàn)及機(jī)遇.
?
智能物聯(lián)網(wǎng)體系架構(gòu)? ?
物聯(lián)網(wǎng)的核心是物與物以及人與物之間的信息 交互. 傳統(tǒng)的物聯(lián)網(wǎng)體系架構(gòu)分為 3 層:感知層如 同人的各種感覺器官,由各種各樣的傳感器設(shè)備組 成,用來(lái)感知外界環(huán)境的溫/濕度、壓強(qiáng)、光照、氣 壓、受力情況等信息;網(wǎng)絡(luò)層相當(dāng)于人的神經(jīng)系統(tǒng), 由各種異構(gòu)網(wǎng)絡(luò)組成,將來(lái)自感知層的各類信息通 過(guò)網(wǎng)絡(luò)傳輸?shù)綉?yīng)用層;應(yīng)用層是用戶和物聯(lián)網(wǎng)間的 橋梁,通過(guò)云計(jì)算、大數(shù)據(jù)、中間件等技術(shù),為不 同行業(yè)提供應(yīng)用方案. 智能物聯(lián)網(wǎng)以數(shù)據(jù)處理為中心,面臨新的機(jī)遇 與挑戰(zhàn),將形成新的體系架構(gòu)與系統(tǒng)軟件平臺(tái),下 面分別進(jìn)行闡述.
智能物聯(lián)網(wǎng)以高效的智能信息、實(shí)時(shí)處理為中 心,隨著邊緣計(jì)算和邊緣智能的引入,將形成云邊 端協(xié)同的 AIoT 體系架構(gòu). 如圖 1 所示,系統(tǒng)分為三 層,包括智能終端層、邊緣智能層、云計(jì)算層。
智能物聯(lián)網(wǎng)是“軟硬協(xié)同”的智能系統(tǒng),在云 邊端協(xié)同的智能物聯(lián)網(wǎng)體系結(jié)構(gòu)之上,軟件平臺(tái)也 是智能物聯(lián)網(wǎng)的核心組成要素. 軟件平臺(tái)在設(shè)備和 應(yīng)用之間提供互操作能力,能夠集成異構(gòu)的計(jì)算和 通信設(shè)備,簡(jiǎn)化應(yīng)用的開發(fā),并為運(yùn)行在異構(gòu)設(shè)備 上的多種應(yīng)用和服務(wù)之間提供互操作能力. 一般來(lái) 說(shuō),體現(xiàn)為中間件形式,如微服務(wù)框架.
智能物聯(lián)網(wǎng)的人機(jī)物融合、泛在計(jì)算、分布式 智能、云邊端協(xié)同等新特質(zhì),以及區(qū)別于傳統(tǒng)物聯(lián) 網(wǎng)的體系及軟件結(jié)構(gòu)帶來(lái)了很多新的挑戰(zhàn)問(wèn)題,下 面將簡(jiǎn)要闡述所面臨的挑戰(zhàn)及相關(guān)技術(shù). 本節(jié)從智 能感知-網(wǎng)絡(luò)通訊-協(xié)同計(jì)算-隱私保護(hù)四個(gè)層面分別 介紹 AIoT 關(guān)鍵技術(shù),如圖 3 所示
總 結(jié)?
智能物聯(lián)網(wǎng)在物聯(lián)網(wǎng)感知、網(wǎng)絡(luò)、應(yīng)用三層架 構(gòu)的基礎(chǔ)上進(jìn)行擴(kuò)充,利用人工智能技術(shù)和物聯(lián)網(wǎng) 泛在設(shè)備平臺(tái)的感知、存儲(chǔ)、計(jì)算和學(xué)習(xí)能力,以 智能信息的高效、實(shí)時(shí)、智能處理為目標(biāo),基于云 邊端協(xié)同的 AIoT 體系架構(gòu)實(shí)現(xiàn)感知、通信、計(jì)算 和應(yīng)用的智能化提升. 本文闡述了云邊端協(xié)同 AIoT 體系架構(gòu)和 AIoT 系統(tǒng)軟件平臺(tái)基本構(gòu)想,介紹了 泛在智能感知、群智感知計(jì)算、群智物聯(lián)網(wǎng)通信、 終端適配深度計(jì)算、物聯(lián)網(wǎng)分布式學(xué)習(xí)、云邊端協(xié) 同計(jì)算、安全與隱私保護(hù)幾個(gè)層面的關(guān)鍵技術(shù)及其 前沿探索. 未來(lái),智能物聯(lián)網(wǎng)研究需要更多的研究者共同 參與,深入物聯(lián)網(wǎng)系統(tǒng)應(yīng)用問(wèn)題研究、關(guān)鍵技術(shù)瓶 頸突破以及通用性平臺(tái)的凝練與研發(fā). 一方面需要 在軟硬協(xié)同終端智能、面向 AIoT 的智能演進(jìn)、新 一代智能物聯(lián)網(wǎng)網(wǎng)絡(luò)、動(dòng)態(tài)場(chǎng)景模型持續(xù)演化、人 機(jī)物融合群智計(jì)算等關(guān)鍵技術(shù)方面實(shí)現(xiàn)不斷突破. 另一方面,面對(duì)多模態(tài)感知、泛在互聯(lián)、場(chǎng)景動(dòng)態(tài)、 資源受限、實(shí)時(shí)處理、普適服務(wù)等技術(shù)挑戰(zhàn),亟需 要研發(fā)具有“自組織、可配置、抽象化”等特征的 通用 AIoT 操作系統(tǒng)、中間件等系統(tǒng)平臺(tái),推動(dòng)生 態(tài)發(fā)展.
編輯:黃飛
?
評(píng)論
查看更多