紋波,理論上和實際上都是一定存在的。通常抑制或減少它的做法有5種:
1、加大電感和輸出電容濾波
根據開關電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。
同樣,輸出紋波與輸出電容的關系:vripple=Imax/(Co×f)。 可以看出,加大輸出電容值可以減小紋波。
通常的做法,對于輸出電容,使用鋁電解電容以達到大容量的目的。但是電解電容在抑制高頻噪聲方面效果不是很好,而且ESR也比較大,所以會在它旁邊并聯一個陶瓷電容,來彌補鋁電解電容的不足。
同時,開關電源工作時,輸入端的電壓Vin不變,但是電流是隨開關變化的。這時輸入電源不會很好地提供電流,通常在靠近電流輸入端(以BucK型為例,是SWITcH附近),并聯電容來提供電流。
上面這種做法對減小紋波的作用是有限的。因為體積限制,電感不會做的很大;輸出電容增加到一定程度,對減小紋波就沒有明顯的效果了;增加開關頻率,又會增加開關損失。所以在要求比較嚴格時,這種方法并不是很好。關于開關電源的原理等,可以參考各類開關電源設計手冊。
2、二級濾波,就是再加一級LC濾波器
LC濾波器對噪紋波的抑制作用比較明顯,根據要除去的紋波頻率選擇合適的電感電容構成濾波電路,一般能夠很好的減小紋波。
采樣點選在LC濾波器之前(Pa),輸出電壓會降低。因為任何電感都有一個直流電阻,當有電流輸出時,在電感上會有壓降產生,導致電源的輸出電壓降低。而且這個壓降是隨輸出電流變化的。
采樣點選在LC濾波器之后(Pb),這樣輸出電壓就是我們所希望得到的電壓。但是這樣在電源系統內部引入了一個電感和一個電容,有可能會導致系統不穩定。關于系統穩定,很多資料有介紹,這里不詳細寫了。
3、開關電源輸出之后,接LDO濾波
這是減少紋波和噪聲最有效的辦法,輸出電壓恒定,不需要改變原有的反饋系統,但也是成本最高,功耗最高的辦法。 任何一款LDO都有一項指標:噪音抑制比。是一條頻率-dB曲線,如右圖是凌特公司LT3024的曲線。
對減小紋波。開關電源的PCB布線也非常關鍵,這是個很赫手的問題。有專門的開關電源PCB 工程師,對于高頻噪聲,由于頻率高幅值較大,后級濾波雖然有一定作用,但效果不明顯。這方面有專門的研究,簡單的做法是在二極管上并電容C或RC,或串聯電感。
4、在二極管上并電容C或RC
二極管高速導通截止時,要考慮寄生參數。在二極管反向恢復期間,等效電感和等效電容成為一個RC振蕩器,產生高頻振蕩。為了抑制這種高頻振蕩,需在二極管兩端并聯電容C或RC緩沖網絡。電阻一般取10Ω-100 Ω,電容取4.7pF-2.2nF。
在二極管上并聯的電容C或者RC,其取值要經過反復試驗才能確定。如果選用不當,反而會造成更嚴重的振蕩。
對高頻噪聲要求嚴格的話,可以采用軟開關技術。關于軟開關,有很多書專門介紹。
5、二極管后接電感(EMI濾波)
這也是常用的抑制高頻噪聲的方法。針對產生噪聲的頻率,選擇合適的電感元件,同樣能夠有效地抑制噪聲。需要注意的是,電感的額定電流要滿足實際的要求。比較簡單的做法,不再詳細解釋。
紋波(ripple)的定義是指在直流電壓或電流中,疊加在直流穩定量上的交流分量;
它主要有以下害處:
1、容易在用電器上產生諧波,而諧波會產生更多的危害;
2、降低了電源的效率;
3、較強的紋波會造成浪涌電壓或電流的產生,導致燒毀用電器;
4、會干擾數字電路的邏輯關系,影響其正常工作;
5、會帶來噪音干擾,使圖像設備、音響設備不能正常工作。
紋波的表示方法
可以用有效值或峰值來表示,或者用絕對量、相對量來表示;
例如:一個電源工作在穩壓狀態,其輸出為12V5A,測得紋波的有效值為10mV,這10mV就是紋波的絕對量,而相對量即紋波系數=紋波電壓/輸出電壓=10mv/12V=0.12 %;
開關電源紋波的主要分類
開關電源輸出紋波主要來源于五個方面:輸入低頻紋波、高頻紋波、寄生參數引起的共模紋波噪聲、功率器件開關過程中產生的超高頻諧振噪聲和閉環調節控制引起的紋波噪聲
1、低頻紋波是與輸出電路的濾波電容容量相關。電容的容量不可能無限制地增加,導致輸出低頻紋波的殘留。交流紋波經DC/DC變換器衰減后,在開關電源輸出端表現為低頻噪聲,其大小由DC/DC變換器的變比和控制系統的增益決定。電流型控制DC / DC變換器的紋波抑制比電壓型稍有提高。但其輸出端的低頻交流紋波仍較大。若要實現開關電源的低紋波輸出,則必須對低頻電源紋波采取濾波措施。可采用前級預穩壓和增大DC / DC變換器閉環增益來消除。
低頻紋波抑制的幾種常用的方法:
a、加大輸出低頻濾波的電感,電容參數。
電容上的紋波有兩個成分,一個是充放電時的電壓升降量,一個是電流進出電容時ESR上的I*R電壓降量。通過輸出紋波與輸出電容的關系式:
vripple=Imax/(Co×f)可以看出,加大輸出電容值可以減小紋波。或者可以考慮采用并聯的方式減小ESR值。
b、采用前饋控制方法,降低低頻紋波分量。
feedforward control (FFC) 前饋控制是按照擾動產生校正作用的一種調節方式,主要用于一些純滯后或容量滯后較大的被控參數的控制。其目的是加速系統響應速度,改善系統的調節品質。
2、高頻紋波噪聲來源于高頻功率開關變換電路,在電路中,通過功率器件對輸入直流電壓進行高頻開關變換而后整流濾波再實現穩壓輸出的,在其輸出端含有與開關工作頻率相同頻率的高頻紋波,其對外電路的影響大小主要和開關電源的變換頻率、輸出濾波器的結構和參數有關,設計中盡量提高功率變換器的工作頻率,可以減少對高頻開關紋波的濾波要求。
高頻紋波抑制常用的方法有以下幾種:
a、提高開關電源工作頻率,以提高高頻紋波頻率,有利于抑制輸出高頻紋波 左圖是開關電源電感L內的電流波形,其紋波電流△I可由下式算出:
可以看出,增加L值,或者提高開關頻率可以減小電感內的電流波動。
b、加大輸出高頻濾波器,可以抑制輸出高頻紋波。
c、采用多級濾波。
一般濾波多采用C型、LC型、CLC型,為了更好的抑制紋波,可以采用增加多一級LC濾波。
3、由于功率器件與散熱器底板和變壓器原、副邊之間存在寄生電容,導線存在寄生電感,因此當矩形波電壓作用于功率器件時,開關電源的輸出端因此
會產生共模紋波噪聲。減小與控制功率器件、變壓器與機殼地之間的寄生電容,并在輸出側加共模抑制電感及電容,可減小輸出的共模紋波噪聲。
減小輸出共模紋波噪聲的常用方法:
a、輸出采用專門設計的EMI濾波器。
b、降低開關毛刺幅度。
主開關管是開關電源的核心器件,同時也是干擾源。其工作頻率直接與電磁干擾的強度相關。隨著開關管的工作頻率升高,開關管電壓、電流的切換速度加快,其傳導干擾和輻射干擾也隨之增加。此外,主開關管上反并聯的鉗位二極管的反向恢復特性不好,或者電壓尖峰吸收電路的參數選擇不當也會造成電磁干擾。
4、超高頻諧振噪聲主要來源于高頻整流二極管反向恢復時二極管結電容、功率器件開關時功率器件結電容與線路寄生電感的諧振,頻率一般為1-10MHz,通過選用軟恢復特性二極管、結電容小的開關管和減少布線長度等措施可以減少超高頻諧振噪聲。
a、理想的二極管在承受反向電壓時截止,不會有反向電流通過。而實際二極管正向導通時,PN結內的電荷被積累,當二極管承受反向電壓時,PN結內積累的電荷將釋放并形成一個反向恢復電流,它恢復到零點的時間與結電容等因素有關。反向恢復電流在變壓器漏感和其他分布參數的影響下將產生較強烈的高頻衰減振蕩。因此,輸出整流二極管的反向恢復噪聲也成為開關電源中一個主要的干擾源。可以通過在二極管兩端并聯RC緩沖器,以抑制其反向恢復噪聲。
二極管反向恢復的等效電路如下:
輸出整流二極管的反向恢復問題也可以通過在輸出整流管上串聯一個飽和電感來抑制。如圖7所示,飽和電感Ls與二極管串聯工作。飽和電感的磁芯是用具有矩形BH曲線的磁性材料制成的。同磁放大器使用的材料一樣,這種磁芯做的電感有很高的磁導率,該種磁芯在BH曲線上擁有一段接近垂直的線性區并很容易進入飽和。實際使用中,在輸出整流二極管導通時,使飽和電感工作在飽和狀態下,相當于一段導線;當二極管關斷反向恢復時,使飽和電感工作在電感特性狀態下,阻礙了反向恢復電流的大幅度變化,從而抑制了它對外部的干擾。
為了抑制二極管尖峰,需在二極管兩端并聯電容C或RC緩沖網絡。RC網絡的取值原則:C從0.01μF~0.1μF,串聯電阻用于限制電容C的放電電流,也為了阻止由于回路阻抗而引起的共振,起阻尼作用。 一般按下式選取:U0/I0≤R(R不小于4Ω)
b、分布及寄生參數引起的開關電源噪聲
開關電源的分布參數是多數干擾的內在因素,開關電源和散熱器之間的分布電容、變壓器初次級之間的分布電容、原副邊的漏感都是噪聲源。共模干擾就是通過變壓器初、次級之間的分布電容以及開關電源與散熱器之間的分布電容傳輸的。其中變壓器繞組的分布電容與高頻變壓器繞組結構、制造工藝有關。可以通過改進繞制工藝和結構、增加繞組之間的絕緣、采用法拉第屏蔽等方法來減小繞組間的分布電容。而開關電源與散熱器之間的分布電容與開關管的結構以及開關管的安裝方式有關。采用帶有屏蔽的絕緣襯墊可以減小開關管與散熱器之間的分布電容。如圖8所示,在高頻工作下的元件都有高頻寄生特性,對其工作狀態產生影響。高頻工作時導線變成了發射線、電容變成了電感、電感變成了電容、電阻變成了共振電路。觀察圖8中的頻率特性曲線可以發現,當頻率過高時各元件的頻率特性產生了相當大的變化。為了保證開關電源在高頻工作時的穩定性,設計開關電源時要充分考慮元件在高頻工作時的特性,選擇使用高頻特性比較好的元件。另外,在高頻時,導線寄生電感的感抗顯著增加,由于電感的不可控性,最終使其變成一根發射線。也就成為了開關電源中的輻射干擾源。
導線長度l ,線徑d與其電感量的關系為:
L(μH) = 0.002 l [ ln( 4l / d ) -1 ]
設計PCB板最好注意以下幾點:
c1、從輸入到輸出最好按順序走線;
c2、變壓器底下和附近不走取樣電路,保護電路,主芯片及振蕩相關電路的線路;
c3、總接地點取在輸出濾波電容上比較合適,各電路接地點應從總接地點分別引出;
c4、驅動信號到開關管走線盡可能短,且盡可能的粗,變壓器到輸出整流管也是一樣;
4、開關電源都需對輸出電壓進行閉環控制,調節器參數設計的不適當也會引起紋波。當輸出端波動時通過反饋網絡進入調節器回路,可能導致調節器的自激振蕩,引起附加紋波。此紋波電壓一般沒有固定的頻率。
在開關直流電源中,往往因調節器參數選擇不適當會引起輸出紋波的增大。 這部分紋波可通過以下方法進行抑制:
a、在調節器輸出增加對地的補償網絡,調節器的補償可抑制調節器自激引起的紋波增大。
例如:CCM模式的反激變換器控制至輸出傳遞函數之間有一個右半平面的零點,當占空比開始變化時(占空比增加時),輸出將會先向相反的方向變化(電源輸出電流減小),易引起電路的振蕩。建議使用PID補償器或DPID(在PID上加一超前補償)補償器。
b、合理選擇閉環調節器的開環放大倍數和閉環調節器的參數,開環放大倍數過大有時會引起調節器的振蕩或自激,使輸出紋彼含量增加,過小的開環放大倍數使輸出電壓穩定性變差及紋波含量增加。所以調節器的開環放大倍數及閉環調節器的參數要合理選取,調試中要根據負載狀況進行調節。
c、在反饋通道中不增加純滯后濾波環節。使延時滯后降到最小。以增加閉環調節的快速性和及時性,對抑制輸出電壓紋波是有益的。
b、圖7給出幾種常見噪聲波形。
現對這些噪聲波的形成原因及相應的抑制措施簡述如下:
附:不同輸出濾波結構的濾波電容計算公式(僅供參考)
評論
查看更多