CoolSiC 2000V SiC MOSFET系列采用TO-247PLUS-4-HCC封裝,規格為12-100mΩ。由于采用了.XT互聯技術,CoolSiC技術的輸出電流能力強,可靠性提高。
2024-03-22 14:08:3563 英飛凌科技股份公司推出的新一代碳化硅(SiC)MOSFET溝槽柵技術,無疑為功率系統和能量轉換領域帶來了革命性的進步。與上一代產品相比,全新的CoolSiC? MOSFET 650V和1200V
2024-03-20 10:32:36130 電子發燒友網報道(文/梁浩斌)近日英飛凌推出了CoolSiC MOSFET G2技術,據官方介紹,這是新一代的溝槽柵SiC MOSFET技術,相比上一代產品也就是CoolSiC MOSFET G1
2024-03-19 18:13:181473 利用 SiC 功率器件開關頻率高、開關損耗低等優點, 將 SiC MOSFET 應用于水下航行器大功率高速電機逆變器模塊, 對軟硬件進行設計。
2024-03-13 14:31:4668 電子發燒友網報道(文/梁浩斌)在過去的2023年,國產SiC功率器件產品迎來了全面爆發,眾多廠商宣布入局或是推出車規級SiC MOSFET產品,尋求打進汽車供應鏈。而今年春節后的新一輪新能源汽車降價
2024-03-13 01:17:002634 碳化硅(SiC)技術一直是推動高效能源轉換和降低碳排放的關鍵,英飛凌最近推出的CoolSiC MOSFET第2代(G2)技術,也是要在這個領域提高了MOSFET的性能指標,擴大還在光伏、儲能、電動汽車充電等領域的市場份額。
2024-03-12 09:33:26239 另外,CoolSiC MOSFET產品組合還成功實現了SiC MOSFET市場中的最低導通電阻值(Rdson),這大大提高了能效、功率密度,以及在電力系統中的可靠性,降低了零件使用數量。
2024-03-10 12:32:41502 在通用PWM發電機中,我可以用任何型號替換SiC MOSFET嗎?
2024-03-01 06:34:58
安全可靠的運行帶來影響。因此針對基于SiC MOSFET的儲能變流器功率單元,重點研究了其低感設計和散熱設計方法,并提出了功率單元的整體設計方案。通過優化疊層母排的結構,將高壓交流模塊與低壓直流模塊
2024-02-22 09:39:26436 SiC MOSFET模塊目前廣泛運用于新能源汽車逆變器、車載充電、光伏、風電、智能電網等領域[2-9] ,展示了新技術的優良特性。
2024-02-19 16:29:22206 ,進行標記、注釋和分享,無需攜帶大量紙質文件,也提高了會議的便捷性。同時,系統的實時協作功能支持多方交互批注、標注內容同步等,實現了參會者之間的零距離實時互動體驗,進一步提高了會議的效率和效果。 ? 其次,分布式
2024-01-15 14:18:10110 等大功率領域,能顯著提高效率,降低裝置體積。在這些應用領域中,對功率器件的可靠性要求很高,為此,針對自主研制的3300V SiC MOSFET 開展柵氧可靠性研究。首先,按照常規的評估技術對其進行了高溫
2024-01-04 09:41:54599 。 一、集成化設計,簡化生產流程 ZR機械手采用集成化設計,將Z軸、R軸、氣路、真空產生與監控、壓力閉環控制與檢測以及氣動夾持等功能集成在一起。這種設計不僅簡化了設備結構,提高了設備的可靠性和穩定性,而且使得生產流程更加簡
2024-01-03 16:20:59140 SiC具有高效節能、穩定性好、工作頻率高、能量密度高等優勢,SiC溝槽MOSFET(UMOSFET)具有高溫工作能力、低開關損耗、低導通損耗、快速開關速度等特點
2023-12-27 09:34:56473 瑤芯微此次參評的專注于“車規級低比導通電阻SiC MOSFET”,專家們一致贊賞該產品具有卓越的研究成果,堪稱行業翹楚。憑借諸多優點,經過嚴謹評鑒,評委會授予瑤芯微的SiC MOSFET技術極高評價,同時認定其擁有自主創新產權,展現了強勁的技術實力。
2023-12-25 10:56:54456 SIC MOSFET在電路中的作用是什么? SIC MOSFET(碳化硅場效應晶體管)是一種新型的功率晶體管,具有較高的開關速度和功率密度,廣泛應用于多種電路中。 首先,讓我們簡要了解一下SIC
2023-12-21 11:27:13686 怎么提高SIC MOSFET的動態響應? 提高SIC MOSFET的動態響應是一個復雜的問題,涉及到多個方面的考慮和優化。在本文中,我們將詳細討論如何提高SIC MOSFET的動態響應,并提供一些
2023-12-21 11:15:52272 SIC MOSFET對驅動電路的基本要求? SIC MOSFET(碳化硅金屬氧化物半導體場效應晶體管)是一種新興的功率半導體器件,具有良好的電氣特性和高溫性能,因此被廣泛應用于各種驅動電路中。SIC
2023-12-21 11:15:49417 高頻、高速開關是碳化硅(SiC) MOSFET的重要優勢之一,這能讓系統效率顯著提升,但也會在寄生電感和電容上產生更大的振蕩,從而在驅動電壓上產生更大的尖峰。
2023-12-20 09:20:45941 高頻、高速開關是碳化硅(SiC) MOSFET的重要優勢之一,這能顯著提升系統效率,但也會在寄生電感和電容上產生更大的振蕩,從而讓驅動電壓產生更大的尖峰。
2023-12-18 09:18:59997 【科普小貼士】MOSFET性能改進:超級結MOSFET(SJ-MOS)
2023-12-13 14:16:16411 SiC MOSFET器件存在可靠性問題,成為產業發展瓶頸。
2023-12-12 09:33:27344 瑞森半導體在工業電源上的應用上:主推碳化硅(SiC)二極管/超結MOS,助力廠家及品牌,打造高質、高性能產品。
2023-12-11 11:56:42207 瑞森半導體在工業電源上的應用上:主推碳化硅(SiC)二極管/超結MOS,助力廠家及品牌,打造高質、高性能產品。
2023-12-11 11:33:13194 帶有快速體二極管的MOSFET器件通過LLC拓撲和FREDFET來提高效率
2023-12-08 17:35:56359 MOS管在三相逆變器上的應用,推薦使用瑞森半導體SiC MOS系列,簡化逆變電路拓撲結構并提高功率密度
2023-12-08 12:00:21558 MOS管在三相逆變器上的應用,推薦使用瑞森半導體SiC MOS系列,簡化逆變電路拓撲結構并提高功率密度
2023-12-08 10:57:48197 SiC MOSFET的橋式結構
2023-12-07 16:00:26157 SiC MOSFET:橋式結構中柵極-源極間電壓的動作
2023-12-07 14:34:17222 有效的熱管理對于防止SiC MOSFET失效有很大的關系,環境過熱會降低設備的電氣特性并導致過早失效,充分散熱、正確放置導熱墊以及確保充足的氣流對于 MOSFET 散熱至關重要。
2023-12-05 17:14:30332 SiC設計干貨分享(一):SiC MOSFET驅動電壓的分析及探討
2023-12-05 17:10:21439 如何選取SiC MOSFET的Vgs門極電壓及其影響
2023-12-05 16:46:29482 1000h SiC MOSFET體二極管可靠性報告
2023-12-05 14:34:46211 SiC MOSFET 和Si MOSFET寄生電容在高頻電源中的損耗對比
2023-12-05 14:31:21258 深入剖析高速SiC MOSFET的開關行為
2023-12-04 15:26:12293 新的寬帶隙半導體技術提高了功率轉換效率
2023-11-30 18:00:18216 在經過多年的技術積累后,硅碳化物 (SiC) MOSFET因其強大的擊穿場和較低的損耗特性,逐漸受到工程師們的熱烈追捧。目前,它們主要用于以絕緣柵雙極晶體管(IGBT)為主導的鍵合部件領域。然而,在當今功率設備的大格局中,SiC MOSFET到底扮演了何種角色?
2023-11-30 16:12:41243 SiC MOSFET AC BTI 可靠性研究
2023-11-30 15:56:02345 SiC FET神應用,在各種領域提高功率轉換效率
2023-11-30 09:46:11155 SiC MOSFET產品組合中首批發布的產品,隨后Nexperia將持續擴大產品陣容,推出多款具有不同RDS(on)的器件,并提供通孔封裝和表面貼裝封裝供選擇。這次推出的兩款器件可用性高,
2023-11-30 09:12:02432 Si對比SiC MOSFET 改變技術—是正確的做法
2023-11-29 16:16:06149 使用SiC MOSFET時如何盡量降低電磁干擾和開關損耗
2023-11-23 09:08:34333 以碳化硅(SiC)或氮化鎵(GaN)為代表的寬禁帶半導體可在功率轉換應用中實現更快的開關速度、更低的損耗和更高的功率密度。隨著功率半導體效率的提高,碳化硅模組周圍材料和組件關注度越來越高,因為需要
2023-11-21 10:18:26365 MOSFET 的選擇關乎效率,設計人員需要在其傳導損耗和開關損耗之間進行權衡。傳導損耗發生在在 MOSFET 關閉期間,由于電流流過導通電阻而造成;開關損耗則發生在MOSFET 開關期間,因為 MOSFET 沒有即時開關而產生。這些都是由 MOSFET 內半導體結構的電容行為引起的。
2023-11-15 16:12:33168 點擊藍字?關注我們 對于高壓開關電源應用,碳化硅或SiC MOSFET與傳統硅MOSFET和 IGBT相比具有顯著優勢。SiCMOSFET很好地兼顧了高壓、高頻和開關性能優勢。它是電壓控制的場效應
2023-11-09 10:10:02334 隨著新能源汽車、光伏、充電樁等應用對系統效率的不斷追求,SiC 功率半導體市場將迎來前所未有的增速。
2023-11-07 11:07:37178 有許多應用,其中的MCU和一個FPGA,配對在一起,可以顯著地經由較低功耗,減少電路板空間,提高了處理,或增加的靈活性提高系統效率。了解如何通過分配這兩個設備之間的函數來實現其中的一些改進,可能是在你的下一個設計成功的關鍵。
2023-11-03 14:48:00144 下面將對于SiC MOSFET和SiC SBD兩個系列,進行詳細介紹
2023-11-01 14:46:19736 1、SiC MOSFET對器件封裝的技術需求
2、車規級功率模塊封裝的現狀
3、英飛凌最新SiC HPD G2和SSC封裝
4、未來模塊封裝發展趨勢及看法
2023-10-27 11:00:52419 點擊藍字?關注我們 對于高壓開關電源應用,碳化硅或 SiC MOSFET 與傳統硅 MOSFET 和 IGBT 相比具有顯著優勢。開關超過 1,000 V的高壓電源軌以數百 kHz 運行并非易事
2023-10-18 16:05:02328 我們知道,SiC MOSFET現階段最“頭疼”的問題就是柵氧可靠性引發的導通電阻和閾值電壓等問題,最近,日本東北大學提出了一項新的外延生長技術,據說可以將柵氧界面的缺陷降低99.5%,溝道電阻可以降低85.71%,整體SiC MOSFET損耗可以降低30%。
2023-10-11 12:26:49611 SBD和Si FRD的效率差距在不斷拉大,并且采用Si FRD的開關器件的溫度較高。運行時間300s時,SiC SBD比Si FRD的效率高0.4%左右,Si FRD的開關器件溫度高了9.3℃。
圖:開關
2023-10-07 10:12:26
碳化硅,或SiC,作為一種半導體材料,正在逐漸嶄露頭角,廣泛應用于電源電子領域。相較于其他可用技術,碳化硅MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)表現出顯著的性能提升,為眾多電子應用帶來了新的可能性。
2023-09-15 14:22:291252 在高功率應用中,碳化硅(SiC)MOSFET與硅(Si)IGBT相比具有多項優勢。其中包括更低的傳導和開關損耗以及更好的高溫性能。
2023-09-11 14:55:31347 這些超結快速恢復硅基功率MOSFET兼具超低恢復電荷(Qrr)和超快快恢復時間(trr),以及出色的品質因數(RDS(on) x Qg),能夠為要求嚴苛的橋式拓撲和ZVS相移轉換器帶來極高的效率
2023-09-08 06:00:53
單通道STGAP2SiCSN柵極驅動器旨在優化SiC MOSFET的控制,采用節省空間的窄體SO-8封裝,通過精確的PWM控制提供強大穩定的性能。隨著SiC技術廣泛應用于提高功率轉換效率,STGAP2SiCSN簡化了設計、節省了空間,并增強了節能型動力系統、驅動器和控制的穩健性和可靠性。
2023-09-05 07:32:19
場效應管MOSFET是mos管嗎?場效應管mos管的區別?場效應管和mos管有什么不一樣的地方?? MOSFET和場效應管(FET)都屬于半導體器件中的一種,類似晶體管。MOSFET是MOS(金屬
2023-09-02 11:31:152543 碳化硅(SiC)MOSFET支持功率電子電路以超快的開關速度和遠超100V/ns和10A/ns的電壓和電流擺率下工作。
2023-08-28 14:46:53318 在本指南中,您將學習如何通過在更短的時間內運行更多的測試來增加您的單元測試吞吐量。
這種效率的提高來自于使用虛擬平臺而不是物理硬件作為開發平臺。
本指南對任何開發或運行嵌入式軟件單元測試的人都很
2023-08-28 06:31:42
談談SiC MOSFET的短路能力
2023-08-25 08:16:131018 據介紹,瞻芯電子開發的第二代SiC MOSFET產品驅動電壓(Vgs)為15-18V,可提升應用兼容性,簡化應用系統設計。在產品結構上,第二代SiC MOSFET與第一代產品同為平面柵MOSFET,但進一步優化了柵氧化層工藝和溝道設計,使器件比導通電阻降低約25%,并顯著降低開關損耗,提升系統效率。
2023-08-23 15:38:01703 ? MOS FET基本概述 MOSFET由 MOS (Metal Oxide Semiconductor金屬氧化物半導體)+ FET (Field Effect Transistor場效應晶體管
2023-08-16 09:22:213852 對于SiC功率MOSFET技術,報告指出,650-1700V SiC MOSFET技術快速迭代,單芯片電流可達200A。提升電流密度同時,解決好特有可靠性問題是提高技術成熟度關鍵。
2023-08-08 11:05:57428 首先,是一張制造測試完成了的SiC MOSFET的晶圓(wafer)。
2023-08-06 10:49:071102 MOSFET的獨特器件特性意味著它們對柵極驅動電路有特殊的要求。了解這些特性后,設計人員就可以選擇能夠提高器件可靠性和整體開關性能的柵極驅動器。在這篇文章中,我們討論了SiC MOSFET器件的特點以及它們對柵極驅動電路的要求,然后介紹了一種能夠解決這些問題和其它系統級考慮因素的IC方案。
2023-08-03 11:09:57740 電子發燒友網站提供《600-650 V MDmesh DM9:快速恢復SJ功率MOSFET提高了效率和穩健性.pdf》資料免費下載
2023-08-01 16:09:541 我公司要做個5.25V,5.5A,輸入174-500VAC ,效率為80%的開關電源;我用EFD25磁芯,匝比為112/3/14,頻率為65KHZ,做出來的效率僅有65%,請教各位大俠,怎么調才能提高電源的效率?
2023-08-01 10:58:07
皇家墨爾本理工大學(RMIT)的工程師們表示,他們已經將廉價、可充電、可回收的質子流電池的能量密度提高了三倍,現在可以挑戰市售鋰離子電池245Wh/kg的比能量密度。
2023-07-30 17:34:09243 本設計筆記展示了如何通過降低振蕩器頻率來提高電壓轉換器的效率。在20mA電壓轉換器上增加一個振蕩器電容可降低振蕩器頻率,從而在降低IO值時提高電壓轉換效率。采用 ICL7660 電荷泵。
2023-06-26 09:51:561323 點擊藍字?關注我們 SiC MOSFET 在功率半導體市場中正迅速普及,因為它最初的一些可靠性問題已得到解決,并且價位已達到非常有吸引力的水平。隨著市場上的器件越來越多,必須了解 SiC
2023-06-25 14:35:02377 SiC功率MOSFET內部晶胞單元的結構,主要有二種:平面結構和溝槽結構。平面SiCMOSFET的結構,如圖1所示。這種結構的特點是工藝簡單,單元的一致性較好,雪崩能量比較高。但是,這種結構的中間
2023-06-19 16:39:467 點擊藍字?關注我們 SiC MOSFET 在功率半導體市場中正迅速普及,因為它最初的一些可靠性問題已得到解決,并且價位已達到非常有吸引力的水平。隨著市場上的器件越來越多,必須了解 SiC
2023-06-16 14:40:01389 SiC MOSFET 在功率半導體市場中正迅速普及,因為它最初的一些可靠性問題已得到解決,并且價位已達到非常有吸引力的水平。隨著市場上的器件越來越多,必須了解 SiC MOSFET 與 IGBT
2023-06-16 14:39:39538 Navitas的GeneSiC碳化硅(SiC) mosfet可為各種器件提供高效率的功率傳輸應用領域,如電動汽車快速充電、數據中心電源、可再生能源、能源等存儲系統、工業和電網基礎設施。具有更高的效率
2023-06-16 06:04:07
前幾天,三一集團的SiC重卡打破了吉尼斯紀錄(.點這里.),很多人好奇這款車的1700V SiC MOSFET供應商是誰,今天答案正式揭曉!
2023-06-14 18:19:55855 更優的雪崩耐量,提高了器件應用中的可靠性。同時,采用自主創新先進的多層外延技術,優化了器件開關特性,使其在系統應用中具有更好的表現,為系統設計提供更多選擇。 安森德SJ MOSFET優勢 效率
2023-06-13 16:30:37
碳化硅 (SiC) 等寬帶隙器件可實現能夠保持高功率密度的晶體管,但需要使用低熱阻封裝,比如 TO-247。然而,此類封裝的連接往往會導致較高的電感。閱讀本博文,了解如何謹慎使用開爾文連接技術以解決電感問題。
2023-06-12 03:24:47635 點擊藍字?關注我們 SiC MOSFET 在功率半導體市場中正迅速普及,因為它最初的一些可靠性問題已得到解決,并且價位已達到非常有吸引力的水平。隨著市場上的器件越來越多,必須了解 SiC
2023-06-08 20:45:02281 當前量產主流SiC MOSFET芯片元胞結構有兩大類,是按照柵極溝道的形狀來區分的,平面型和溝槽型。
2023-06-07 10:32:074308 SiC功率MOSFET由于其出色的物理特性,在充電樁及太陽能逆變器等高頻應用中日益得到重視。因為SiC MOSFET開關頻率高達幾百K赫茲,門極驅動的設計在應用中就變得格外關鍵。因為在短路
2023-06-01 10:12:07998 在高壓開關電源應用中,相較傳統的硅 MOSFET 和 IGBT,碳化硅(以下簡稱“SiC”)MOSFET 有明 顯的優勢。
2023-05-26 09:52:33462 與硅相比,寬禁帶半導體技術,如 Wolfspeed 的碳化硅(SiC)MOSFET 和肖特基勢壘二極管(SBD)可為電源設計人員帶來諸多優勢。更低的傳導和開關損耗提高了效率,高頻工作有助于減小電感
2023-05-24 10:40:05546 碳化硅(SiC)已經成為一個明確的選擇,因為它已經成熟并且是第三代。基于 SiC 的 FET 具有許多性能優勢,特別是在效率、更高的可靠性、更少的熱管理問題和更小的占位面積方面。這些適用于整個功率譜,不需要徹底改變設計技術,盡管它們可能需要一些調整。
2023-05-24 10:15:29676 該方案由一個升壓電感器、兩個高頻升壓 SiC 開關(SiC1 和 SiC2)和兩個用于在電路上傳導電流的元件組成,線路可以是兩個慢速二極管。(A)顯示了兩個硅MOSFET(Si1和Si2)。(B)表明,Si1和Si2的使用進一步提高了效率。
2023-05-24 10:06:222823 的TO-247封裝,其非常規封裝和熱設計方法通過改良設計提高了能效和功率密度。 ? 文:英飛凌科技高級應用工程師Jorge Cerezo ? 逆變焊機通常是通過功率模塊解決方案設計來實現更高輸出功率,從而幫助降低節能焊機的成本、重量和尺寸[1]。 ? 在焊機行業,諸如提高效率、降
2023-05-23 17:14:18619 碳化硅(SiC)MOSFET 的使用促使了多個應用的高效率電力輸送,比如電動車快速充電、電源、可再生能源以及電網基礎設施。
2023-05-22 17:36:411063 碳化硅(SiC)技術為電源、電動汽車和充電、大功率工業設備、太陽能應用和數據中心等多個行業顯著提高了功率傳輸和管理性能。
2023-05-22 17:12:11939 MIMO天線分集技術是一種利用多個天線進行接收的技術,通過將多個天線排列在一起,從而提高了系統的容量和可靠性。MIMO天線分集技術可以采用不同的技術手段和算法,如空時編碼、空時分集、空時多址等,以提高系統的性能和效率。
2023-05-19 16:54:331996 MOSFET(MOS管)中的“開關”時間可以改變電壓嗎?
2023-05-16 14:26:16
這些挑戰。與硅相比,SiC器件具有更低的導通電阻和更快的開關速度,并且能夠在更高的結溫下耐受更大的電壓和電流。這些特性結合其更小的尺寸以及更高的效率,提高了功率密度,這使SiC成為了許多重要EV應用中的關鍵技術。據我們估計
2023-05-11 20:16:34224 條件。因此SiC MOSFET閾值電壓的準確測試,對于指導用戶應用,評價SiC MOSFET技術狀態具有重要意義。
2023-05-09 14:59:06853 高壓SiC MOSFET的結構和技術存在著幾個重要瓶頸:1)器件漂移區的導通電阻隨電壓等級相應增加,其他結構(溝道、JFET區等)的存在進一步提高了總導通電阻。
2023-05-04 09:43:181395 本文是“SiC MOSFET:柵極-源極電壓的浪涌抑制方法”系列文章的總結篇。介紹SiC MOSFET的柵極-源極電壓產生的浪涌、浪涌抑制電路、正電壓浪涌對策、負電壓浪涌對策和浪涌抑制電路的電路板
2023-04-13 12:20:02814 MOSFET溝道會降低溝道密度并增加RonA。現在新的內嵌式SBD結構解決了這一問題,東芝證實這種方法顯著提高了性能特征。通過將SBD按格子花紋分布,降低了SBD嵌入式SiC MOSFET的導通損耗,并
2023-04-11 15:29:18
ROHM的1,200VSiC MOSFET“S4101”和650V SiC SBD“S6203”是以裸芯片的形式提供的,采用ROHM的這些產品將有助于應用的小型化并提高模塊的性能和可靠性。
2023-04-10 09:34:29483 減小了電場集中效應,提高了SiC器件的擊穿電壓,SiC MOSFET的擊穿電壓和具體的每一個開關單元有關,同時和耐壓環也有很大的關系。
2023-04-07 11:19:23705 SiC MOSFET溝槽結構將柵極埋入基體中形成垂直溝道,盡管其工藝復雜,單元一致性比平面結構差。
2023-04-01 09:37:171329 在PCIMEurope2018,5–7June2018,NurembergSiIGBT和SiC溝槽MOSFET之間有許多電氣及物理方面的差異,PracticalAspectsandBod
2023-03-31 10:48:08529 V SiC MOSFET“S4101”和650V SiC SBD“S6203”是以裸芯片的形式提供的,采用ROHM的這些產品將有助于應用的小型化并提高模塊的性能和可靠性。另外
2023-03-29 15:06:13
評論
查看更多