--- 產品詳情 ---
Function | Memory interface |
Output frequency (Max) (MHz) | 500 |
Number of outputs | 25 |
Output supply voltage (V) | 1.5, 1.8 |
Core supply voltage (V) | 1.5, 1.8 |
Features | DDR2 register |
Operating temperature range (C) | 0 to 70 |
Rating | Catalog |
Output type | SSTL-18 |
Input type | SSTL-18 |
- Member of the Texas Instruments Widebus+? Family
- Pinout Optimizes DDR-II DIMM PCB Layout
- Configurable as 25-Bit 1:1 or 14-Bit 1:2 Registered Buffer
- Chip-Select Inputs Gate the Data Outputs from Changing State and Minimizes System Power Consumption
- Output Edge-Control Circuitry Minimizes Switching Noise in an Unterminated Line
- Supports SSTL_18 Data Inputs
- Differential Clock (CLK and CLK\) Inputs
- Supports LVCMOS Switching Levels on the Control and RESET\ Inputs
- RESET\ Input Disables Differential Input Receivers, Resets All Registers, and Forces All Outputs Low
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
- 5000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
Widebus+ is a trademark of Texas Instruments.
This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V VCC operation. In the 1:1 pinout configuration, only one device per DIMM is required to drive nine SDRAM loads. In the 1:2 pinout configuration, two devices per DIMM are required to drive 18 SDRAM loads.
All inputs are SSTL_18, except the LVCMOS reset (RESET)\ and LVCMOS control (Cn) inputs. All outputs are edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications.
The SN74SSTU32864 operates from a differential clock (CLK and CLK\). Data are registered at the crossing of CLK going high and CLK\ going low.
The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low) to 14-bit 1:2 (when high). C0 and C1 should not be switched during normal operation. They should be hard-wired to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration, the A6, D6, and H6 terminals are driven low and should not be used.
The device supports low-power standby operation. When RESET\ is low, the differential input receivers are disabled, and undriven (floating) data, clock, and reference voltage (VREF) inputs are allowed. In addition, when RESET\ is low, all registers are reset and all outputs are forced low. The LVCMOS RESET\ and Cn inputs always must be held at a valid logic high or low level.
The two VREF pins (A3 and T3), are connected together internally by approximately 150 . However, it is necessary to connect only one of the two VREF pins to the external VREF power supply. An unused VREF pin should be terminated with a VREF coupling capacitor.
The device also supports low-power active operation by monitoring both system chip select (DCS\ and CSR\) inputs and will gate the Qn outputs from changing states when both DCS\ and CSR\ inputs are high. If either DCS\ or CSR\ input is low, the Qn outputs function normally. The RESET\ input has priority over the DCS\ and CSR\ control and forces the output low. If the DCS\ control functionality is not desired, the CSR\ input can be hard-wired to ground, in which case, the setup-time requirement for DCS\ is the same as for the other D data inputs.
To ensure defined outputs from the register before a stable clock has been supplied, RESET\ must be held in the low state during power up.
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34