--- 產品詳情 ---
Technology Family | LVC |
Supply voltage (Min) (V) | 2 |
Supply voltage (Max) (V) | 3.6 |
Number of channels (#) | 8 |
IOL (Max) (mA) | 24 |
ICC (Max) (uA) | 10 |
IOH (Max) (mA) | -24 |
Input type | Standard CMOS |
Output type | 3-State |
Features | Balanced outputs, Very high speed (tpd 5-10ns), Over-voltage tolerant inputs, Bus-hold |
Rating | Military |
- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max tpd of 5.9 ns at 3.3 V
- Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
- Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC)
- Ioff Supports Partial-Power-Down Mode Operation
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)
The SN54LVCH244A octal buffer/line driver is designed for 2.7-V to 3.6-V VCC operation, and the SN74LVCH244A octal buffer/line driver is designed for 1.65-V to 3.6-V VCC operation.
These devices are organized as two 4-bit line drivers with separate output-enable (OE) inputs. When OE is low, these devices pass data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.
These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34