--- 產品詳情 ---
Number of channels (#) | 8 |
Technology Family | BCT |
Supply voltage (Min) (V) | 4.5 |
Supply voltage (Max) (V) | 5.5 |
Input type | TTL-Compatible CMOS |
Output type | 3-State |
Clock Frequency (Max) (MHz) | 70 |
IOL (Max) (mA) | 48 |
IOH (Max) (mA) | -12 |
ICC (Max) (uA) | 60000 |
Features | Ultra high speed (tpd <5ns) |
- Operating Voltage Range of 4.5 V to 5.5 V
- State-of-the-Art BiCMOS Design Significantly Reduces ICCZ
- Full Parallel Access for Loading
- 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.
The eight latches of the ?BCT373 devices are transparent D-type latches. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When the latch enable is taken low, the Q outputs are latched at the logic levels that were set up at the D inputs.
A buffered output-enable (OE)\ input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.
To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
OE\ does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.
為你推薦
-
TI數字多路復用器和編碼器SN54HC1512022-12-23 15:12
-
TI數字多路復用器和編碼器SN54LS1532022-12-23 15:12
-
TI數字多路復用器和編碼器CD54HC1472022-12-23 15:12
-
TI數字多路復用器和編碼器CY74FCT2257T2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74LVC157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS258A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS257A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74ALS157A2022-12-23 15:12
-
TI數字多路復用器和編碼器SN74AHCT1582022-12-23 15:12
-
電動汽車直流快充方案設計【含參考設計】2023-08-03 08:08
-
Buck電路的原理及器件選型指南2023-07-31 22:28
-
100W USB PD 3.0電源2023-07-31 22:27
-
基于STM32的300W無刷直流電機驅動方案2023-07-06 10:02
-
上新啦!開發板僅需9.9元!2023-06-21 17:43
-
參考設計 | 2KW AC/DC數字電源方案2023-06-21 17:43
-
千萬不能小瞧的PCB半孔板2023-06-21 17:34