“汽車技術發展到如今,幾乎沒有人質疑無人駕駛會成為汽車行業變革的巨大浪潮,然而對于各項技術落地的時間點,各大車企、互聯網公司、研究機構、通訊公司、科技巨頭等眾說紛紜,本文援引莫尼塔財新智庫的一篇研究,系統梳理了無人駕駛各關鍵技術節點以及其成熟時間。”
1)汽車電子沿著兩橫三縱的技術架構,逐步實現成熟的智能化和網聯化:2016年-2018年主要是三大傳感器的融合使用;2017年-2019年主要是高精度地圖的成熟;2019年-2022年是車載通訊模塊、互聯網終端、通信服務的成熟;2022年-2025年主要是決策芯片和算法的成熟。
2)2016-2018—三大傳感器融合:國內毫米波雷達今年開始出貨;車載視覺系統硬件已經達到消費級水平,進入軟件成熟期;激光雷達成本不斷下降,加速ADAS和無人駕駛的普及進程。
3)2017-2020—高精度地圖的成熟:傳統地圖無法滿足自動駕駛的要求,高精度地圖是L3、L4級別最為關鍵的技術;當前精度地圖參與者主要有圖商、自動智能駕駛科技公司、ADAS方案提供商、傳統車企四類,其優劣勢各不相同,硬件軟件逐步融合。
4)2019-2022—車載通訊模塊的成熟:LTE-V在延時、頻譜帶寬、可靠性、組網成本、演進路線等方面都具有優勢,未來的發展趨勢大概率是使用LTE-V標準;目前布局的主要是半導體廠商和汽車廠商,但國內很多公司都進入了產業鏈,大唐電信也發布了全球第一臺LTE-V車聯網設備,有望在車載通訊模塊爆發之際獲得高速成長。
5)2022-2025—算法和決策芯片的成熟:各大廠商都在用不同的芯片設計支持不同的算法,Google自己已經開發了TPU,用于CNN加速,地平線也在開發BPU,Intel收購Moileye打造芯片算法一體化,未來或是FPGA支持下的深度學習算法來實現自動駕駛。
1. 汽車電子發展時間表
1.1 汽車電子沿著兩橫三縱技術架構走向成熟
智能網聯汽車是搭載先進的車載傳感器、控制器、執行器等裝置,融合現代通信與網絡技術,實現車與X(人、車、路、后臺等)智能信息交換共享,具備復雜的環境感知、智能決策、協同控制和執行等功能,可實現安全、舒適、節能、高效行駛,并最終可替代人來操作的新一代汽車。按照技術應用和應用場景,組成了兩橫三縱的技術架構。
1.2 汽車電子時間發展表—智能化與網聯化協同發展
汽車電子的發展有兩個維度,智能化和網聯化,沿著兩橫三縱的技術架構,逐步實現成熟的智能化和網聯化。
2016年-2018年主要是三大傳感器的融合使用,傳感器和視覺解決方案的融合促進實現自適應巡航、自動緊急制動等部分自動駕駛(PA)功能,以及輔助網聯信息交互;2017年-2019年主要是高精度地圖的成熟,實時路況的更新和更豐富的路況信息加速實現車道內自動駕駛、全自動泊車等有條件自動駕駛(CA)功能,以及部分網聯信息協同感知;
2019年-2022年是車載通訊模塊、互聯網終端、通信服務的成熟,5G網絡建設的部署完成和商業化,V2X信息交互低延遲要求共同推動網聯化的加速,實現更復雜路況(近郊)的全自動駕駛;2022年-2025年主要是決策芯片和算法的成熟,隨著人工智能嵌入式落地智能終端,FGPA通用架構向ASIC專用架構的轉變,算法和芯片設計的協同發展,實現全區域的無人駕駛等高級(HA)/完全自動駕駛(FA)功能和網聯協同決策控制的功能。
1.3 各國陸續出臺政策推動ADAS的普及
歐盟委員會考慮2017年將19項安全技術納入新車的標準配置,并將強制執行,自動緊急制動和車道偏離警告成為標配;國內2017年速度輔助系統、自動緊急制動、車道偏離預警/車道偏離輔助的加分要求已設定為系統裝機量達到100%。各國政策陸續出臺,要求汽車逐步配備汽車電子相關組建,成為汽車電子發展最大的推動力。
1.4 國外谷歌和特斯拉兩種發展路徑加速發展
加州車管局(DMV)公開了自動駕駛項目的脫離測試數據,基本衡量了目前主要自動駕駛項目在加州境內在不同天氣環境,不同的路段進行測試的進展,谷歌的性能明顯優于其他廠商。
谷歌和特斯拉在無人駕駛領域采取了兩種不同的有代表性的發展路徑,谷歌利用地圖和深度學習實時建模來實現自動駕駛;特斯拉依賴于傳統的傳感器的融合實現數據搜集識別、處理分析、完成自動駕駛功能。從自動駕駛精度來看,谷歌的沒有明確的數據,但其軟件層面的可以檢測和理解手勢之類的信號并作出反應;moblieye的FCW(前向碰撞預警)的算法識別精度達到99.99%;特斯拉的算法處理水平很高,奔馳的路測車有著比特斯拉多一倍的傳感器,但是精度遠不及特斯拉。
谷歌的自動駕駛技術發展可以分為兩段,以waymo成為獨立事業部為轉折點:第一階段,主要突出軟件領域和技術突破,采用自有的高精度地圖和Velodyne提供的64線激光雷達方案,配備谷歌chauffeur軟件系統,最為突出的是展示的無人駕駛原型車中直接拋棄了傳統車的剎車、方向盤、油門等設備,僅用一個啟動鍵實現無人駕駛,而硬件制造原型車都是來源傳統車企,如2014年展示的谷歌第二代車型就是從白色雷克薩斯RX 450H混合動力SUV改造而來。
2016年11月,waymo成為獨立事業部后,開始采用硬件和軟件并行的方案,采用自己研發的激光雷達,傳統傳感器和8個視覺模塊相互融合,最新展示的無人車使用了三個不同探測距離的激光雷達,自主技術研發將激光雷達成本降低九成。未來技術商業化首先落地在貨運(有個固定場景的低速共享市場)和共享車服務的應用。
2016年11月,特斯拉Autopilot2.0 發布,該系統將包含8個攝像頭,覆蓋360度可視范圍,對周圍環境的監控距離最遠可達 250 米;車輛配備的12 個超聲波傳感器完善了視覺系統,探測和傳感硬、軟物體的距離接近上一代系統的兩倍。增強版前置雷達通過冗余波長提供周圍更豐富的數據,雷達波可以穿越大雨、霧、灰塵,甚至前方車輛。另外,Autopilot2.0使用的處理芯片NVIDIA Drive PX 2的處理性能為原來Mobileye Q3的40倍。
1.5 國內科技公司和傳統車企合作打造自動駕駛,精度提升速度快
通過863計劃實施和國家自然科學基金委項目支持,清華大學、國防科技大學、北京理工大學等部分高校、院士團隊、汽車企業在環境感知、人的行為認知及決策、基于車載和基于車路通信的駕駛輔助系統的研究開發取得了積極進展,并開發出無人駕駛汽車演示樣車。清華大學等高校聯合企業開發的自適應巡航控制系統、行駛車道偏離預警系統、行駛前向預警系統等具有先進駕駛輔助系統(ADAS)功能樣機,正在逐步進入產業化階段。
2. 2016-2018—三大傳感器融合
2.1 毫米波雷達國內今年開始出貨
毫米波雷達的主流方向是24GHz和77GHz,24GHz主要應用于汽車后方,77GHz主要應用于前方和側向。未來毫米波雷達會逐漸向77GHz頻段(76-81GHz)統一,其中76-77GHz主要用于長距離毫米波雷達,77-81GHz主要用于中短距離毫米波雷達(已有歐盟、CEPT成員國、新加坡、美國FCC委員會、加拿大工業部等進行相關規劃)。
隨著配備從高端車型向中低端車型下沉的趨勢,目前毫米波雷達已經逐漸普及,一般配備情況是“1長+6短”(如奔馳S級)、“1長+4短”(如奧迪A4)、“1長+2短”(如別克威朗)。
前端單片微波集成電路MMIC和雷達天線高頻PCB板是其核心組成部分。
MMIC由國外公司掌控,特別是77GHz的MMIC,只掌握在英飛凌、ST、飛思卡爾等極少數國外芯片廠商手中,國內處于初始研發階段,主要在24GHz雷達方面,華域汽車、杭州智波、蕪湖森思泰克等企業在已有部分積累。雷達天線高頻PCB板技術也掌握在國外廠商手中,Schweizer占據全球30%市場份額,在77GHz方面優勢明顯,PCB使用的層壓板材則主要由Rogers、Isola等公司提供。國內高頻PCB板廠商暫無技術儲備,根據圖紙代加工,元器件仍需國外進口,滬電股份已就24GHz和77GHz高頻雷達用PCB產品與Schweizer開展合作。
目前中國市場中高端汽車裝配的毫米波雷達傳感器全部依賴進口,華域汽車已經能生產24GHz毫米波雷達,主要完成BSD盲點偵測、LCA車道切換輔助等功能,解決產品形態的導入。國內第二階段的研發將同樣針對24GHz產品,目標是降低成本,預計產品2017年底出現。
2.2 車載視覺系統硬件成熟,軟件逐步升級
車載視覺系統包括車載圖像感光芯片、專用圖像處理ISP芯片、車載光學鏡頭、車載視覺系統。
借由鏡頭采集圖像后,由攝像頭內的感光組件電路及控制組件對圖像進行處理并轉化為電腦能處理的數字信號,從而實現感知車輛周邊的路況情況、前向碰撞預警、道偏移報警和行人檢測等功能。
硬件方面,車載攝像頭主要由CMOS鏡頭(包括lens和光感芯片等),芯片,其他物料(內存,sim卡,外殼)組成。
軟件方面,以mobileye為例,主要體現在芯片的升級和處理平臺的升級,工作頻率從122Mhz提升到332Mhz,訪問方式的改變使速率提升一倍,圖像由640*480彩色像素提升為2048*2048(Input)和4096*2048(output)等。
從市場競爭格局來看,除了極少數廠商具備垂直一體化的能力,絕大部分廠商都將業務集中于產業中的某個或者某幾個環節。光學鏡片主要是***的廠商在主導,大陸廠商在紅外截止濾光片上有一定優勢,圖像傳感器主要是歐美和韓國廠商為主,模組環節大陸、韓國、***、日本廠商份額居前,國內廠商成長迅速。
目前汽車零部件提供商巨頭的攝像頭傳感器都已于整車廠合作量產,同時加大研發投入,注重芯片和算法的提升。國內未來攝像頭的發展主要體現在專用圖像處理芯片與復雜圖像處理技術突破,基本實現自主研制,最終實現車載視覺與其他感知系統融合產品的大規模應用。
評論
查看更多