在我們的生活中,大到天體觀測(cè)、小到MP3播放器上的頻譜,沒(méi)有傅里葉變換都無(wú)法實(shí)現(xiàn)。
通俗來(lái)講,離散傅里葉變換(DFT)就是把一串復(fù)雜波形中分成不同頻率成分。
比如聲音,如果用聲波記錄儀顯示聲音的話,其實(shí)生活中絕大部分聲音都是非常復(fù)雜、甚至雜亂無(wú)章的。
而通過(guò)傅里葉變換,就能把這些雜亂的聲波轉(zhuǎn)化為正弦波,也就是我們平常看到的音樂(lè)頻譜圖的樣子。
不過(guò)在實(shí)際計(jì)算中,這個(gè)過(guò)程其實(shí)非常復(fù)雜。
如果把聲波視作一個(gè)連續(xù)函數(shù),它可以唯一表示為一堆三角函數(shù)相疊加。不過(guò)在疊加過(guò)程中,每個(gè)三角函數(shù)的加權(quán)系數(shù)不同,有的要加高一些、有的要壓低一些,有的甚至不加。
傅里葉變換要找到這些三角函數(shù)以及它們各自的權(quán)重。
這不就巧了,這種找啊找的過(guò)程,像極了神經(jīng)網(wǎng)絡(luò)。
神經(jīng)網(wǎng)絡(luò)的本質(zhì)其實(shí)就是逼近一個(gè)函數(shù)。
那豈不是可以用訓(xùn)練神經(jīng)網(wǎng)絡(luò)的方式來(lái)搞定傅里葉變換?
這還真的可行,并且最近有人在網(wǎng)上發(fā)布了自己訓(xùn)練的過(guò)程和結(jié)果。
DFT=神經(jīng)網(wǎng)絡(luò)
該怎么訓(xùn)練神經(jīng)網(wǎng)絡(luò)呢?這位網(wǎng)友給出的思路是這樣的:
首先要把離散傅里葉變換(DFT)看作是一個(gè)人工神經(jīng)網(wǎng)絡(luò),這是一個(gè)單層網(wǎng)絡(luò),沒(méi)有bias、沒(méi)有激活函數(shù),并且對(duì)于權(quán)重有特定的值。它輸出節(jié)點(diǎn)的數(shù)量等于傅里葉變換計(jì)算后頻率的數(shù)量。
具體方法如下:
這是一個(gè)DFT:
k表示每N個(gè)樣本的循環(huán)次數(shù);
N表示信號(hào)的長(zhǎng)度;
表示信號(hào)在樣本n處的值。
一個(gè)信號(hào)可以表示為所有正弦信號(hào)的和。
是一個(gè)復(fù)值,它給出了信號(hào)x中頻率為k的正弦信號(hào)的信息;從
我們可以計(jì)算正弦的振幅和相位。
換成矩陣式,它就變成了這樣:
這里給出了特定值k的傅里葉值。
不過(guò)通常情況下,我們要計(jì)算全頻譜,即k從[0,1,…N-1]的值,這可以用一個(gè)矩陣來(lái)表示(k按列遞增,n按行遞增):
簡(jiǎn)化后得到:
看到這里應(yīng)該還很熟悉,因?yàn)樗且粋€(gè)沒(méi)有bias和激活函數(shù)的神經(jīng)網(wǎng)絡(luò)層。
指數(shù)矩陣包含權(quán)值,可以稱之為復(fù)合傅里葉權(quán)值(Complex Fourier weights),通常情況下我們并不知道神經(jīng)網(wǎng)絡(luò)的權(quán)重,不過(guò)在這里可以。
不用復(fù)數(shù)
通常我們也不會(huì)在神經(jīng)網(wǎng)絡(luò)中使用復(fù)數(shù),為了適應(yīng)這種情況,就需要把矩陣的大小翻倍,使其左邊部分包含實(shí)數(shù),右邊部分包含虛數(shù)。
將帶入DFT,可以得到:
然后用實(shí)部(cos形式)來(lái)表示矩陣的左半部分,用虛部(sin形式)來(lái)表示矩陣的右半部分:
簡(jiǎn)化后可以得到:
將
稱為傅里葉權(quán)重;
需要注意的是,
和
實(shí)際上包含相同的信息,但是
不使用復(fù)數(shù),所以它的長(zhǎng)度是
的兩倍。
換句話說(shuō),我們可以用
或
表示振幅和相位,但是我們通常會(huì)使用
。
現(xiàn)在,就可以將傅里葉層加到網(wǎng)絡(luò)中了。
用傅里葉權(quán)重計(jì)算傅里葉變換
現(xiàn)在就可以用神經(jīng)網(wǎng)絡(luò)來(lái)實(shí)現(xiàn)
,并用快速傅里葉變換(FFT)檢查它是否正確。 import matplotlib.pyplot as plty_real = y[:, :signal_length]y_imag = y[:, signal_length:]tvals = np.arange(signal_length).reshape([-1, 1])freqs = np.arange(signal_length).reshape([1, -1])arg_vals = 2 * np.pi * tvals * freqs / signal_lengthsinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_lengthreconstructed_signal = np.sum(sinusoids, axis=1)print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))plt.subplot(2, 1, 1)plt.plot(x[0,:])plt.title('Original signal')plt.subplot(2, 1, 2)plt.plot(reconstructed_signal)plt.title('Signal reconstructed from sinusoids after DFT')plt.tight_layout()plt.show() rmse: 2.3243522568191728e-15
得到的這個(gè)微小誤差值可以證明,計(jì)算的結(jié)果是我們想要的。
另一種方法是重構(gòu)信號(hào):
import matplotlib.pyplot as plty_real = y[:, :signal_length]y_imag = y[:, signal_length:]tvals = np.arange(signal_length).reshape([-1, 1])freqs = np.arange(signal_length).reshape([1, -1])arg_vals = 2 * np.pi * tvals * freqs / signal_lengthsinusoids = (y_real * np.cos(arg_vals) - y_imag * np.sin(arg_vals)) / signal_lengthreconstructed_signal = np.sum(sinusoids, axis=1)print('rmse:', np.sqrt(np.mean((x - reconstructed_signal)**2)))plt.subplot(2, 1, 1)plt.plot(x[0,:])plt.title('Original signal')plt.subplot(2, 1, 2)plt.plot(reconstructed_signal)plt.title('Signal reconstructed from sinusoids after DFT')plt.tight_layout()plt.show() rmse: 2.3243522568191728e-15
最后可以看到,DFT后從正弦信號(hào)重建的信號(hào)和原始信號(hào)能夠很好地重合。
通過(guò)梯度下降學(xué)習(xí)傅里葉變換
現(xiàn)在就到了讓神經(jīng)網(wǎng)絡(luò)真正來(lái)學(xué)習(xí)的部分,這一步就不需要向之前那樣預(yù)先計(jì)算權(quán)重值了。
首先,要用FFT來(lái)訓(xùn)練神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)離散傅里葉變換:
importtensorflow as tfsignal_length=32# Initialise weight vector to train:W_learned=tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)# Expected weights, for comparison:W_expected=create_fourier_weights(signal_length)losses=[]rmses=[]fori in range(1000):# Generate a random signal each iteration:x=np.random.random([1, signal_length]) - 0.5# Compute the expected result using the FFT:fft=np.fft.fft(x)y_true=np.hstack([fft.real, fft.imag])withtf.GradientTape() as tape:y_pred=tf.matmul(x, W_learned)loss=tf.reduce_sum(tf.square(y_pred - y_true))# Train weights, via gradient descent:W_gradient=tape.gradient(loss, W_learned)W_learned=tf.Variable(W_learned - 0.1 * W_gradient)losses.append(loss)rmses.append(np.sqrt(np.mean((W_learned- W_expected)**2))) Finalloss value1.6738563548424711e-09Finalweights' rmse value 3.1525832404710523e-06
?
得出結(jié)果如上,這證實(shí)了神經(jīng)網(wǎng)絡(luò)確實(shí)能夠?qū)W習(xí)離散傅里葉變換。
訓(xùn)練網(wǎng)絡(luò)學(xué)習(xí)DFT
除了用快速傅里葉變化的方法,還可以通過(guò)網(wǎng)絡(luò)來(lái)重建輸入信號(hào)來(lái)學(xué)習(xí)DFT。(類似于autoencoders自編碼器)。
自編碼器(autoencoder, AE)是一類在半監(jiān)督學(xué)習(xí)和非監(jiān)督學(xué)習(xí)中使用的人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks, ANNs),其功能是通過(guò)將輸入信息作為學(xué)習(xí)目標(biāo),對(duì)輸入信息進(jìn)行表征學(xué)習(xí)(representation learning)。
W_learned=tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)tvals=np.arange(signal_length).reshape([-1, 1])freqs=np.arange(signal_length).reshape([1, -1])arg_vals=2 * np.pi * tvals * freqs / signal_lengthcos_vals=tf.cos(arg_vals) / signal_lengthsin_vals=tf.sin(arg_vals) / signal_lengthlosses=[]rmses=[]fori in range(10000):x=np.random.random([1, signal_length]) - 0.5withtf.GradientTape() as tape:y_pred=tf.matmul(x, W_learned)y_real=y_pred[:, 0:signal_length]y_imag=y_pred[:, signal_length:]sinusoids=y_real * cos_vals - y_imag * sin_valsreconstructed_signal=tf.reduce_sum(sinusoids, axis=1)loss=tf.reduce_sum(tf.square(x - reconstructed_signal))W_gradient=tape.gradient(loss, W_learned)W_learned=tf.Variable(W_learned - 0.5 * W_gradient)losses.append(loss)rmses.append(np.sqrt(np.mean((W_learned- W_expected)**2))) Finalloss value4.161919455121241e-22Finalweights' rmse value 0.20243339269590094
作者用這一模型進(jìn)行了很多測(cè)試,最后得到的權(quán)重不像上面的例子中那樣接近傅里葉權(quán)值,但是可以看到重建的信號(hào)是一致的。
換成輸入振幅和相位試試看呢。
W_learned=tf.Variable(np.random.random([signal_length, 2 * signal_length]) - 0.5)losses=[]rmses=[]fori in range(10000):x=np.random.random([1, signal_length]) - .5withtf.GradientTape() as tape:y_pred=tf.matmul(x, W_learned)y_real=y_pred[:, 0:signal_length]y_imag=y_pred[:, signal_length:]amplitudes=tf.sqrt(y_real**2 + y_imag**2) / signal_lengthphases=tf.atan2(y_imag, y_real)sinusoids=amplitudes * tf.cos(arg_vals + phases)reconstructed_signal=tf.reduce_sum(sinusoids, axis=1)loss=tf.reduce_sum(tf.square(x - reconstructed_signal))W_gradient=tape.gradient(loss, W_learned)W_learned=tf.Variable(W_learned - 0.5 * W_gradient)losses.append(loss)rmses.append(np.sqrt(np.mean((W_learned- W_expected)**2))) Finalloss value2.2379359316633115e-21Finalweights' rmse value 0.2080118219691059
可以看到,重建信號(hào)再次一致;
不過(guò),和此前一樣,輸入振幅和相位最終得到的權(quán)值也不完全等同于傅里葉權(quán)值(但非常接近)。
由此可以得出結(jié)論,雖然最后得到的權(quán)重還不是最準(zhǔn)確的,但是也能夠獲得局部的最優(yōu)解。
這樣一來(lái),神經(jīng)網(wǎng)絡(luò)就學(xué)會(huì)了傅里葉變換!
值得一提的是,這個(gè)方法目前還有疑問(wèn)存在:
首先,它并沒(méi)有解釋計(jì)算出的權(quán)值和真正的傅里葉權(quán)值相差多少;
而且,也沒(méi)有說(shuō)明將傅里葉層放到模型中能帶來(lái)哪些益處。
編輯:黃飛
評(píng)論
查看更多