來(lái)源:易百納技術(shù)社區(qū) 隨著人工智能技術(shù)的不斷進(jìn)步,深度學(xué)習(xí)成為計(jì)算機(jī)視覺(jué)領(lǐng)域的重要技術(shù)。微表情識(shí)別作為人類情感分析的一種重要手段,受到了越來(lái)越多的關(guān)注。本文將介紹基于深度學(xué)習(xí)的微表情識(shí)別技術(shù),并提
2023-08-14 17:27:051207 深度學(xué)習(xí)這幾年特別火,就像5年前的大數(shù)據(jù)一樣,不過(guò)深度學(xué)習(xí)其主要還是屬于機(jī)器學(xué)習(xí)的范疇領(lǐng)域內(nèi),所以這篇文章里面我們來(lái)嘮一嘮機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的算法流程區(qū)別。
2023-09-06 12:48:401181 成為目前計(jì)算機(jī)視覺(jué)、模式識(shí)別、人工智能等領(lǐng)域最為重要的支撐技術(shù)之一。在此報(bào)告中,我將簡(jiǎn)要回顧深度學(xué)習(xí)的主要技術(shù)及其在圖像識(shí)別、文字識(shí)別等方面一些最新研究進(jìn)展,介紹基于Path Signature及深度
2017-03-22 17:16:00
來(lái)源:易百納技術(shù)社區(qū)
基于深度學(xué)習(xí)的醫(yī)學(xué)圖像分割與病變識(shí)別隨著人工智能技術(shù)的不斷發(fā)展,其在醫(yī)療領(lǐng)域的應(yīng)用越來(lái)越受到關(guān)注。其中,基于深度學(xué)習(xí)的醫(yī)學(xué)圖像分割與病變識(shí)別技術(shù)在臨床診斷、治療規(guī)劃
2023-09-04 11:11:23
未來(lái)的某個(gè)時(shí)候,人們必定能夠相對(duì)自如地運(yùn)用人工智能,安全地駕車出行。這個(gè)時(shí)刻何時(shí)到來(lái)我無(wú)法預(yù)見(jiàn);但我相信,彼時(shí)“智能”會(huì)顯現(xiàn)出更“切實(shí)”的意義。與此同時(shí),通過(guò)深度學(xué)習(xí)方法,人工智能的實(shí)際應(yīng)用能夠在汽車
2019-03-13 06:45:03
方法方面的最新進(jìn)展,目的是發(fā)現(xiàn)研究差距并提出進(jìn)一步的改進(jìn)建議。在簡(jiǎn)要介紹了幾種深度學(xué)習(xí)模型之后,我們回顧并分析了使用深度學(xué)習(xí)進(jìn)行故障檢測(cè),診斷和預(yù)后的應(yīng)用。該調(diào)查驗(yàn)證了深度學(xué)習(xí)對(duì)PHM中各種類型的輸入
2021-07-12 06:46:47
降落任務(wù)1.DQN/Double DQN/Dueling DQN2.PER高頻問(wèn)題:1.深度強(qiáng)化學(xué)習(xí)網(wǎng)絡(luò)訓(xùn)練穩(wěn)定性 2.探索與利用關(guān)鍵點(diǎn):1.經(jīng)驗(yàn)回放技術(shù)的實(shí)現(xiàn)2.目標(biāo)網(wǎng)絡(luò)更新實(shí)操解析與訓(xùn)練四實(shí)驗(yàn)
2022-04-21 14:57:39
一:深度學(xué)習(xí)DeepLearning實(shí)戰(zhàn)時(shí)間地點(diǎn):1 月 15日— 1 月18 日二:深度強(qiáng)化學(xué)習(xí)核心技術(shù)實(shí)戰(zhàn)時(shí)間地點(diǎn): 1 月 27 日— 1 月30 日(第一天報(bào)到 授課三天;提前環(huán)境部署 電腦
2021-01-09 17:01:54
深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。晦澀難懂的概念,略微有些難以
2018-07-04 16:07:53
在未來(lái)的某個(gè)時(shí)候,人們必定能夠相對(duì)自如地運(yùn)用人工智能,安全地駕車出行。這個(gè)時(shí)刻何時(shí)到來(lái)我無(wú)法預(yù)見(jiàn);但我相信,彼時(shí)“智能”會(huì)顯現(xiàn)出更“切實(shí)”的意義。與此同時(shí),通過(guò)深度學(xué)習(xí)方法,人工智能的實(shí)際應(yīng)用能夠在
2022-11-11 07:55:50
利用ML構(gòu)建無(wú)線環(huán)境地圖及其在無(wú)線通信中的應(yīng)用?使用深度學(xué)習(xí)的收發(fā)機(jī)設(shè)計(jì)和信道解碼基于ML的混合學(xué)習(xí)方法,用于信道估計(jì)、建模、預(yù)測(cè)和壓縮 使用自動(dòng)編碼器等ML技術(shù)的端到端通信?無(wú)線電資源管理深度強(qiáng)化學(xué)習(xí)
2021-07-01 10:49:03
深度學(xué)習(xí)常用模型有哪些?深度學(xué)習(xí)常用軟件工具及平臺(tái)有哪些?深度學(xué)習(xí)存在哪些問(wèn)題?
2021-10-14 08:20:47
創(chuàng)客們的最酷“玩具” 智能無(wú)人機(jī)、自主機(jī)器人、智能攝像機(jī)、自動(dòng)駕駛……今年最令硬件創(chuàng)客們著迷的詞匯,想必就是這些一線“網(wǎng)紅”了。而這些網(wǎng)紅的背后,幾乎都和計(jì)算機(jī)視覺(jué)與深度學(xué)習(xí)密切相關(guān)。 深度學(xué)習(xí)
2021-07-19 06:17:28
CPU優(yōu)化深度學(xué)習(xí)框架和函數(shù)庫(kù)機(jī)器學(xué)***器
2021-02-22 06:01:02
具有深度學(xué)習(xí)模型的嵌入式系統(tǒng)應(yīng)用程序帶來(lái)了巨大的好處。深度學(xué)習(xí)嵌入式系統(tǒng)已經(jīng)改變了各個(gè)行業(yè)的企業(yè)和組織。深度學(xué)習(xí)模型可以幫助實(shí)現(xiàn)工業(yè)流程自動(dòng)化,進(jìn)行實(shí)時(shí)分析以做出決策,甚至可以預(yù)測(cè)預(yù)警。這些AI
2021-10-27 06:34:15
深度學(xué)習(xí)如何改進(jìn)(一)
2019-07-01 16:46:00
深度學(xué)習(xí)進(jìn)程
2020-06-14 16:48:46
深度學(xué)習(xí)應(yīng)用在測(cè)量與測(cè)繪技術(shù)
2019-05-16 17:21:50
一:深度學(xué)習(xí)DeepLearning實(shí)戰(zhàn)時(shí)間地點(diǎn):1 月 15日— 1 月18 日二:深度強(qiáng)化學(xué)習(xí)核心技術(shù)實(shí)戰(zhàn)時(shí)間地點(diǎn): 1 月 27 日— 1 月30 日(第一天報(bào)到 授課三天;提前環(huán)境部署 電腦
2021-01-10 13:42:26
上漲,因?yàn)槭聦?shí)表明,它們的 GPU 在訓(xùn)練和運(yùn)行 深度學(xué)習(xí)模型 方面效果明顯。實(shí)際上,英偉達(dá)也已經(jīng)對(duì)自己的業(yè)務(wù)進(jìn)行了轉(zhuǎn)型,之前它是一家純粹做 GPU 和游戲的公司,現(xiàn)在除了作為一家云 GPU 服務(wù)
2024-03-21 15:19:45
`FPGA是當(dāng)前很熱門的技術(shù)。發(fā)展到現(xiàn)在,F(xiàn)PGA器件由早期的純邏輯粘合發(fā)展到如今的可編程片上系統(tǒng)(SOC),F(xiàn)PGA應(yīng)用的領(lǐng)域愈發(fā)廣泛,開(kāi)發(fā)難度和復(fù)雜度也越來(lái)越大。有很多工程師都在探索FPGA技術(shù)
2017-01-11 13:58:34
MATLAB機(jī)器學(xué)習(xí)與深度學(xué)習(xí)核心技術(shù)應(yīng)用培訓(xùn)班備十余年MATLAB編程開(kāi)發(fā)經(jīng)驗(yàn),機(jī)器學(xué)習(xí)、深度學(xué)習(xí)領(lǐng)域 一線實(shí)戰(zhàn)專家主講。培訓(xùn)時(shí)間:11月09日-11月12日培訓(xùn)地點(diǎn):北京理工大學(xué)(中關(guān)村
2018-10-23 16:51:05
對(duì)分類體系進(jìn)行了綜合訓(xùn)練。演示平臺(tái)目前訓(xùn)練的類別只是新聞的政治、經(jīng)濟(jì)、軍事等。內(nèi)置的算法支持類別自定義訓(xùn)練,該算法對(duì)常規(guī)文本的分類準(zhǔn)確率較高,綜合開(kāi)放測(cè)試的F值接近86%。在應(yīng)用方面,NLPIR 深度
2019-11-18 17:46:10
,高度模塊化,可擴(kuò)展性)。 ? 同時(shí)支持卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò),以及兩者的組合。? 在 CPU 和 GPU 上無(wú)縫運(yùn)行。--摘自《Keras:基于-Python-的深度學(xué)習(xí)庫(kù)》
2018-06-04 22:32:12
11月15日,在重慶召開(kāi)的《2018第二屆國(guó)際手機(jī)產(chǎn)業(yè)領(lǐng)袖峰會(huì)——5G新世界·AI云生態(tài)》論壇上,OPPO全球副總裁劉暢表示,5G可以催生出更多前所未有的應(yīng)用場(chǎng)景,OPPO正積極構(gòu)建自身的5G技術(shù)能力,并在標(biāo)準(zhǔn)、研發(fā)和應(yīng)用探索全方面的布局。OPPO全球副總裁劉暢
2019-09-11 11:51:52
處理器,最新一代的TDA4處理器在算例上得到了大幅提高的同時(shí),在軟件方面提供了更好地支持,同時(shí)提供了更多的深度學(xué)習(xí)模型的部署示例,方便開(kāi)發(fā)人員快速開(kāi)發(fā)迭代產(chǎn)品,極大地縮短的產(chǎn)品開(kāi)發(fā)周期。圖1. TIDL
2022-11-03 06:53:11
`labview在檢測(cè)PCBA插件的錯(cuò)、漏、反等缺陷中的應(yīng)用檢測(cè)原理通過(guò)高精度彩色工業(yè)相機(jī)不停板實(shí)時(shí)抓取板卡圖像,采取卷積神經(jīng)網(wǎng)絡(luò)算法處理圖像,智能判定元器件不良。采用最新的深度學(xué)習(xí)算法對(duì)電容,光耦,二極管等訓(xùn)練模型,能兼容不同pcb板,不同環(huán)境。`
2021-07-13 15:27:47
工智能實(shí)踐經(jīng)驗(yàn),相應(yīng)也在實(shí)踐過(guò)程中對(duì)深度學(xué)習(xí)平臺(tái)進(jìn)行了很多優(yōu)化,以降低內(nèi)部使用深度學(xué)習(xí)平臺(tái)進(jìn)行模型訓(xùn)練的難度。現(xiàn)在,華為云深度學(xué)習(xí)服務(wù)平臺(tái)秉承以服務(wù)的形式分享華為30年沉淀的數(shù)字化技術(shù)和實(shí)踐經(jīng)驗(yàn)的理念,將華為內(nèi)部
2018-08-02 20:44:09
,F(xiàn)PGA架構(gòu)是為應(yīng)用程序?qū)iT定制的。在開(kāi)發(fā)FPGA的深度學(xué)習(xí)技術(shù)時(shí),較少?gòu)?qiáng)調(diào)使算法適應(yīng)某固定計(jì)算結(jié)構(gòu),從而留出更多的自由去探索算法層面的優(yōu)化。需要很多復(fù)雜的下層硬件控制操作的技術(shù)很難在上層軟件語(yǔ)言中實(shí)現(xiàn)
2018-08-13 09:33:30
請(qǐng)問(wèn)為什么模擬技術(shù)在某些性能方面勝于數(shù)字技術(shù)?
2021-04-22 06:52:03
都出現(xiàn)了重大突破。深度學(xué)習(xí)是這些領(lǐng)域中所最常使用的技術(shù),也被業(yè)界大為關(guān)注。然而,深度學(xué)習(xí)模型需要極為大量的數(shù)據(jù)和計(jì)算能力,只有更好的硬件加速條件,才能滿足現(xiàn)有數(shù)據(jù)和模型規(guī)模繼續(xù)擴(kuò)大的需求。 FPGA
2019-10-10 06:45:41
深度學(xué)習(xí)是什么意思
2020-11-11 06:58:03
上述分類之外,還被用于多項(xiàng)任務(wù)(下面顯示了四個(gè)示例)。在 FPGA 上進(jìn)行深度學(xué)習(xí)的好處我們已經(jīng)提到,許多服務(wù)和技術(shù)都使用深度學(xué)習(xí),而 GPU 大量用于這些計(jì)算。這是因?yàn)榫仃嚦朔ㄗ鳛?b class="flag-6" style="color: red">深度學(xué)習(xí)中的主要
2023-02-17 16:56:59
小弟新人,現(xiàn)在做維修電工。因工作需要有時(shí)也會(huì)用到弱電方面知識(shí),對(duì)電子技術(shù)有興趣且一直自學(xué)習(xí)弱電技術(shù),學(xué)歷低,天賦差,無(wú)老師指導(dǎo)等各方面原因但至今仍是半桶水。誠(chéng)懇的請(qǐng)教各位前輩multisim對(duì)學(xué)習(xí)電子技術(shù)是否有幫助?如果有該如何利用multisim學(xué)習(xí)電子技術(shù)?望各位師傅賜教!
2017-10-13 19:16:15
圖像分析軟件。其中硬件負(fù)責(zé)獲取特定條件下的理想圖像,軟件負(fù)責(zé)獲取圖像中的有用信息。基于機(jī)器學(xué)習(xí)的模式識(shí)別系統(tǒng)三、深度學(xué)習(xí)在圖像處理中的應(yīng)用圖像處理技術(shù)包括圖像預(yù)處理和數(shù)據(jù)分析兩部分,圖像預(yù)處理指的是
2018-05-31 09:36:03
ABSTRACT1.基于深度學(xué)習(xí)的異常檢測(cè)的研究方法進(jìn)行結(jié)構(gòu)化和全面的概述2.回顧這些方法在各個(gè)領(lǐng)域這個(gè)中的應(yīng)用情況,并評(píng)估他們的有效性。3.根據(jù)基本假設(shè)和采用的方法將最先進(jìn)的深度異常檢測(cè)技術(shù)分為
2021-07-12 06:36:22
異常檢測(cè)的深度學(xué)習(xí)研究綜述原文:arXiv:1901.03407摘要異常檢測(cè)是一個(gè)重要的問(wèn)題,在不同的研究領(lǐng)域和應(yīng)用領(lǐng)域都得到了很好的研究。本文的研究目的有兩個(gè):首先,我們對(duì)基于深度學(xué)習(xí)的異常檢測(cè)
2021-07-12 07:10:19
本文由回映電子整理分享,歡迎工程老獅們參與學(xué)習(xí)與評(píng)論內(nèi)容? 射頻系統(tǒng)中的深度學(xué)習(xí)? Deepwave Digital技術(shù)? 信號(hào)檢測(cè)和分類示例? GPU的實(shí)時(shí)DSP基準(zhǔn)測(cè)試? 總結(jié)回映電子是一家
2022-01-05 10:00:58
摘要異常檢測(cè)是一個(gè)重要的問(wèn)題,在不同的研究領(lǐng)域和應(yīng)用領(lǐng)域都得到了充分的研究。本調(diào)查的目的有兩個(gè)方面,首先我們對(duì)基于深度學(xué)習(xí)的異常檢測(cè)的研究方法進(jìn)行了結(jié)構(gòu)化和全面的概述。此外,我們回顧了這些方法在
2021-07-12 08:05:13
下面來(lái)探討一下深度學(xué)習(xí)在嵌入式設(shè)備上的應(yīng)用,具體如下:1、深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,包含多個(gè)隱層的多層感知器(MLP) 是一種原始的深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更加抽象
2021-10-27 08:02:31
的研發(fā)經(jīng)驗(yàn)。在過(guò)去的工作中,他發(fā)表過(guò)論文十余篇,申請(qǐng)中國(guó)專利超過(guò)100項(xiàng),其中已經(jīng)授權(quán)的有95項(xiàng)。他曾任職百度深度學(xué)習(xí)研究院,負(fù)責(zé)人臉識(shí)別方向,曾經(jīng)多次帶領(lǐng)團(tuán)隊(duì)在主流的人臉檢測(cè)、人臉識(shí)別競(jìng)賽上取得
2018-07-19 10:01:11
怎樣從傳統(tǒng)機(jī)器學(xué)習(xí)方法過(guò)渡到深度學(xué)習(xí)?
2021-10-14 06:51:23
1、如何在深度學(xué)習(xí)結(jié)構(gòu)中使用紋理特征 如果圖像數(shù)據(jù)集具有豐富的基于紋理的特征,如果將額外的紋理特征提取技術(shù)作為端到端體系結(jié)構(gòu)的一部分,則深度學(xué)習(xí)技術(shù)會(huì)更有效。 預(yù)訓(xùn)練模型的問(wèn)題是,由于模型
2022-10-26 16:57:26
請(qǐng)問(wèn)一下什么是深度學(xué)習(xí)?
2021-08-30 07:35:21
宣傳,于是我們經(jīng)不住誘惑就買了板子,然后我們就開(kāi)始了我們的學(xué)習(xí)之旅。 在淘寶賣家的眼里有著齊全的入門資料是板子的最大的賣點(diǎn),于是當(dāng)我們拿到開(kāi)發(fā)板的時(shí)候,我們可以什么都不用做,直接使用已經(jīng)建立好的工程模板
2016-06-07 16:21:45
基于自適應(yīng)探索改進(jìn)的深度增強(qiáng)學(xué)習(xí)算法_毛堅(jiān)桓
2017-01-08 15:15:591 深度學(xué)習(xí)技術(shù) 這一輪AI的技術(shù)突破,主要源于深度學(xué)習(xí)技術(shù),而關(guān)于AI和深度學(xué)習(xí)的發(fā)展歷史我們這里不重復(fù)講述,可自行查閱。我用了一個(gè)多月的業(yè)務(wù)時(shí)間,去了解和學(xué)習(xí)了深度學(xué)習(xí)技術(shù),在這里,我嘗試以一名業(yè)務(wù)
2017-09-30 14:35:192 鄢志杰將在12月11日下午的深度學(xué)習(xí)分論壇進(jìn)行題為Deep Learning 助力客服小二:數(shù)據(jù)技術(shù)及機(jī)器學(xué)習(xí)在客服中心的應(yīng)用的主題演講,分享基于DNN、CNN、RNN(LSTM)及其各種組合模型
2017-10-13 17:01:220 深度學(xué)習(xí)與傳統(tǒng)的機(jī)器學(xué)習(xí)最主要的區(qū)別在于隨著數(shù)據(jù)規(guī)模的增加其性能也不斷增長(zhǎng)。當(dāng)數(shù)據(jù)很少時(shí),深度學(xué)習(xí)算法的性能并不好。這是因?yàn)?b class="flag-6" style="color: red">深度學(xué)習(xí)算法需要大量的數(shù)據(jù)來(lái)完美地理解它。另一方面,在這種情況下,傳統(tǒng)的機(jī)器學(xué)習(xí)算法使用制定的規(guī)則,性能會(huì)比較好。
2017-10-27 16:50:181720 深度強(qiáng)化學(xué)習(xí)DRL自提出以來(lái), 已在理論和應(yīng)用方面均取得了顯著的成果。尤其是谷歌DeepMind團(tuán)隊(duì)基于深度強(qiáng)化學(xué)習(xí)DRL研發(fā)的AlphaGo,將深度強(qiáng)化學(xué)習(xí)DRL成推上新的熱點(diǎn)和高度,成為人工智能歷史上一個(gè)新的里程碑。因此,深度強(qiáng)化學(xué)習(xí)DRL非常值得研究。
2018-06-29 18:36:0027596 1月17日,院友袁進(jìn)輝博士回到微軟亞洲研究院做了題為《打造最強(qiáng)深度學(xué)習(xí)引擎》的報(bào)告,分享了深度學(xué)習(xí)框架方面的技術(shù)進(jìn)展。
2018-01-25 09:23:454492 商湯科技研發(fā)總監(jiān)、中山大學(xué)教授林倞,將從產(chǎn)業(yè)落地以及學(xué)術(shù)創(chuàng)新兩種視角出發(fā),帶領(lǐng)大家一起探索“后深度學(xué)習(xí)時(shí)代”的新挑戰(zhàn)。
2018-02-09 11:40:073954 本文將主要介紹深度學(xué)習(xí)模型在美團(tuán)平臺(tái)推薦排序場(chǎng)景下的應(yīng)用和探索。
2018-04-02 09:28:1220675 本文將主要介紹深度學(xué)習(xí)模型在美團(tuán)平臺(tái)推薦排序場(chǎng)景下的應(yīng)用和探索。
2018-04-02 09:35:246070 近年來(lái),深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)中比較火的一種方法出現(xiàn)在我們面前,但是和非深度學(xué)習(xí)的機(jī)器學(xué)習(xí)相比(我將深度學(xué)習(xí)歸于機(jī)器學(xué)習(xí)的領(lǐng)域內(nèi)),還存在著幾點(diǎn)很大的不同,具體來(lái)說(shuō),有以下幾點(diǎn).
2018-05-02 10:30:004135 深度強(qiáng)化學(xué)習(xí)的理論、自動(dòng)駕駛技術(shù)的現(xiàn)狀以及問(wèn)題、深度強(qiáng)化學(xué)習(xí)在自動(dòng)駕駛技術(shù)當(dāng)中的應(yīng)用及基于深度強(qiáng)化學(xué)習(xí)的禮讓自動(dòng)駕駛研究。
2018-08-18 10:19:574854 本深度學(xué)習(xí)是什么?了解深度學(xué)習(xí)難嗎?讓你快速了解深度學(xué)習(xí)的視頻講解本文檔視頻讓你4分鐘快速了解深度學(xué)習(xí)
深度學(xué)習(xí)的概念源于人工智能的人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。
2018-08-23 14:36:1616 由 mengqiqi 于 星期四, 2018-09-13 09:34 發(fā)表 在本文中,我們將研究深度學(xué)習(xí)和機(jī)器學(xué)習(xí)之間的差異。我們將逐一了解它們,然后討論他們?cè)诟鱾€(gè)方面的不同之處。除了深度學(xué)習(xí)和機(jī)器
2018-09-13 17:19:01392 普林斯頓大學(xué)計(jì)算機(jī)科學(xué)系教授Sanjeev Arora做了深度學(xué)習(xí)理論理解探索的報(bào)告,包括三個(gè)部分:
2018-10-03 12:41:003453 深度學(xué)習(xí)到底有多熱,這里我就不再?gòu)?qiáng)調(diào)了,也因此有很多人關(guān)心這樣的幾個(gè)問(wèn)題,“適不適合轉(zhuǎn)行深度學(xué)習(xí)(機(jī)器學(xué)習(xí))”,“怎么樣轉(zhuǎn)行深度學(xué)習(xí)(機(jī)器學(xué)習(xí))”,“轉(zhuǎn)行深度學(xué)習(xí)需要哪些入門材料?”等等。
2018-10-19 14:07:192467 該項(xiàng)目是對(duì)基于深度學(xué)習(xí)的自然語(yǔ)言處理(NLP)的概述,包括用來(lái)解決不同 NLP 任務(wù)和應(yīng)用的深度學(xué)習(xí)模型(如循環(huán)神經(jīng)網(wǎng)絡(luò)、卷積神經(jīng)網(wǎng)絡(luò)和強(qiáng)化學(xué)習(xí))的理論介紹和實(shí)現(xiàn)細(xì)節(jié),以及對(duì) NLP 任務(wù)(機(jī)器翻譯、問(wèn)答和對(duì)話系統(tǒng))當(dāng)前最優(yōu)結(jié)果的總結(jié)。
2019-03-01 09:13:574424 本文從硬件加速的視角考察深度學(xué)習(xí)與FPGA,指出有哪些趨勢(shì)和創(chuàng)新使得這些技術(shù)相互匹配,并激發(fā)對(duì)FPGA如何幫助深度學(xué)習(xí)領(lǐng)域發(fā)展的探討。
2019-06-28 17:31:466529 隨著人類技術(shù)的不斷發(fā)展,人工智能,深度學(xué)習(xí),機(jī)器學(xué)習(xí)和NLP都是受歡迎的搜索熱詞。
2020-05-03 18:09:002435 深度學(xué)習(xí)DL是機(jī)器學(xué)習(xí)中一種基于對(duì)數(shù)據(jù)進(jìn)行表征學(xué)習(xí)的方法。深度學(xué)習(xí)DL有監(jiān)督和非監(jiān)督之分,都已經(jīng)得到廣泛的研究和應(yīng)用。強(qiáng)化學(xué)習(xí)RL是通過(guò)對(duì)未知環(huán)境一邊探索一邊建立環(huán)境模型以及學(xué)習(xí)得到一個(gè)最優(yōu)策略。強(qiáng)化學(xué)習(xí)是機(jī)器學(xué)習(xí)中一種快速、高效且不可替代的學(xué)習(xí)算法。
2020-06-13 11:39:405527 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)與神經(jīng)網(wǎng)絡(luò)、人工智能、圖形化建模、優(yōu)化、模式識(shí)別和信號(hào)處理等技術(shù)融合后產(chǎn)生的一個(gè)領(lǐng)域。
2020-11-05 09:31:194711 繼系列上一篇 所以,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別是什么?淺談后,今天繼續(xù)深入探討兩者的更多區(qū)別。
2021-03-01 15:44:4215804 覺(jué)信息的理解可以被再現(xiàn)甚至超越。借助深度學(xué)習(xí),作為機(jī)器學(xué)習(xí)的一部分,可以在應(yīng)用實(shí)例的基礎(chǔ)上學(xué)習(xí)和訓(xùn)練復(fù)雜的關(guān)系。 機(jī)器學(xué)習(xí)中的另一種技術(shù)是例如“超級(jí)矢量機(jī)”。與深度學(xué)習(xí)相比,必須手動(dòng)定義和驗(yàn)證功能。在深度學(xué)習(xí)中
2021-03-12 16:11:007763 諸如大數(shù)據(jù)和人工智能之類的新興技術(shù)正以驚人的速度發(fā)展,并且在深度學(xué)習(xí)方面取得了令人難以置信的進(jìn)步,這在一定程度上使其成為可能。
2021-04-14 17:20:082464 引言 攝像頭傳統(tǒng)視覺(jué)技術(shù)在算法上相對(duì)容易實(shí)現(xiàn),因此已被現(xiàn)有大部分車廠用于輔助駕駛功能。但是隨著自動(dòng)駕駛技術(shù)的發(fā)展,基于深度學(xué)習(xí)的算法開(kāi)始興起,本期小編就來(lái)說(shuō)說(shuō)深度視覺(jué)算法相關(guān)技術(shù)方面的資料,讓我們
2021-05-27 17:00:358192 基于深度學(xué)習(xí)的道路表面裂縫檢測(cè)技術(shù)
2021-07-05 16:30:3073 薦語(yǔ)文章列舉出了近年來(lái)深度學(xué)習(xí)的重要研究成果,從方法、架構(gòu),以及正則化、優(yōu)化技術(shù)方面進(jìn)行概述。對(duì)于剛?cè)腴T的深度學(xué)習(xí)新手是一份不錯(cuò)的參考資料,在形成基本學(xué)術(shù)界圖景、指導(dǎo)文獻(xiàn)查找等方面都能提供幫助。
2022-08-19 11:01:261460 期待已久的機(jī)器學(xué)習(xí)時(shí)代終于到來(lái)了。深度學(xué)習(xí)技術(shù)對(duì)作戰(zhàn)人員的潛在好處既巨大又深遠(yuǎn)。隨著防御系統(tǒng)趨向于更大的應(yīng)用程序自主性,深度學(xué)習(xí)技術(shù)過(guò)于復(fù)雜,無(wú)法用更傳統(tǒng)的處理技術(shù)實(shí)現(xiàn),現(xiàn)在可以幫助顯著推動(dòng)
2022-11-02 09:48:53471 是不是深度學(xué)習(xí)就可以解決所有問(wèn)題呢?是不是它就比傳統(tǒng)計(jì)算機(jī)視覺(jué)方法好呢?但是深度學(xué)習(xí)無(wú)法解決所有的問(wèn)題,在一些問(wèn)題上,具備全部特征的傳統(tǒng)技術(shù)仍是更好的方案。此外,深度學(xué)習(xí)可以和傳統(tǒng)算法結(jié)合,以克服深度學(xué)習(xí)帶來(lái)的計(jì)算力,時(shí)間,特點(diǎn),輸入的質(zhì)量等方面的挑戰(zhàn)。
2022-11-28 11:01:151133 人工智能的概念在1956年就被提出,如今終于走入現(xiàn)實(shí),離不開(kāi)一種名為“深度學(xué)習(xí)”的技術(shù)。深度學(xué)習(xí)的運(yùn)作模式,如同一場(chǎng)傳話游戲。給神經(jīng)網(wǎng)絡(luò)輸入數(shù)據(jù),對(duì)數(shù)據(jù)的特征進(jìn)行描述,在神經(jīng)網(wǎng)絡(luò)中層層傳遞,最終
2023-01-14 23:34:43588 這是新的系列教程,在本教程中,我們將介紹使用 FPGA 實(shí)現(xiàn)深度學(xué)習(xí)的技術(shù),深度學(xué)習(xí)是近年來(lái)人工智能領(lǐng)域的熱門話題。
2023-03-03 09:52:131090 如果將圖像輸入深度學(xué)習(xí)模型,則必須使用批歸一化等技術(shù)對(duì)圖像進(jìn)行歸一化,這將有助于標(biāo)準(zhǔn)化網(wǎng)絡(luò)的輸入。這將有助于網(wǎng)絡(luò)學(xué)習(xí)得更快、更穩(wěn)定。批量歸一化有時(shí)也會(huì)減少泛化誤差。
2023-04-12 08:59:00100 智造之眼?科學(xué)設(shè)計(jì)深度學(xué)習(xí)各應(yīng)用流程,在盡量簡(jiǎn)化前期準(zhǔn)備工作的基礎(chǔ)上為客戶提供穩(wěn)定且準(zhǔn)確的深度學(xué)習(xí)解決方案。
2023-05-04 16:55:52424 隨著機(jī)器學(xué)習(xí), 深度學(xué)習(xí)的發(fā)展,很多人眼很難去直接量化的特征, 深度學(xué)習(xí)可以搞定, 這就是深度學(xué)習(xí)帶給我們的優(yōu)點(diǎn)和前所未有的吸引力。
2023-07-17 12:55:43281 深度學(xué)習(xí)的七種策略 深度學(xué)習(xí)已經(jīng)成為了人工智能領(lǐng)域的熱門話題,它能夠幫助人們更好地理解和處理自然語(yǔ)言、圖形圖像、語(yǔ)音等各種數(shù)據(jù)。然而,要想獲得最好的效果,只是使用深度學(xué)習(xí)技術(shù)不夠。要獲得最好的結(jié)果
2023-08-17 16:02:531167 深度學(xué)習(xí)算法簡(jiǎn)介 深度學(xué)習(xí)算法是什么?深度學(xué)習(xí)算法有哪些?? 作為一種現(xiàn)代化、前沿化的技術(shù),深度學(xué)習(xí)已經(jīng)在很多領(lǐng)域得到了廣泛的應(yīng)用,其能夠不斷地從數(shù)據(jù)中提取最基本的特征,從而對(duì)大量的信息進(jìn)行機(jī)器學(xué)習(xí)
2023-08-17 16:02:566007 深度學(xué)習(xí)是什么領(lǐng)域? 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一種子集,由多層神經(jīng)網(wǎng)絡(luò)組成。它是一種自動(dòng)學(xué)習(xí)技術(shù),可以從數(shù)據(jù)中學(xué)習(xí)高層次的抽象模型,以進(jìn)行推斷和預(yù)測(cè)。深度學(xué)習(xí)廣泛應(yīng)用于計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別、自然語(yǔ)言處理
2023-08-17 16:02:59995 什么是深度學(xué)習(xí)算法?深度學(xué)習(xí)算法的應(yīng)用 深度學(xué)習(xí)算法被認(rèn)為是人工智能的核心,它是一種模仿人類大腦神經(jīng)元的計(jì)算模型。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一種變體,主要通過(guò)變換各種架構(gòu)來(lái)對(duì)大量數(shù)據(jù)進(jìn)行學(xué)習(xí)以及分類處理
2023-08-17 16:03:041302 深度學(xué)習(xí)框架是什么?深度學(xué)習(xí)框架有哪些?? 深度學(xué)習(xí)框架是一種軟件工具,它可以幫助開(kāi)發(fā)者輕松快速地構(gòu)建和訓(xùn)練深度神經(jīng)網(wǎng)絡(luò)模型。與手動(dòng)編寫代碼相比,深度學(xué)習(xí)框架可以大大減少開(kāi)發(fā)和調(diào)試的時(shí)間和精力,并提
2023-08-17 16:03:091588 深度學(xué)習(xí)框架的作用是什么 深度學(xué)習(xí)是一種計(jì)算機(jī)技術(shù),它利用人工神經(jīng)網(wǎng)絡(luò)來(lái)模擬人類的學(xué)習(xí)過(guò)程。由于其高度的精確性和精度,深度學(xué)習(xí)已成為現(xiàn)代計(jì)算機(jī)科學(xué)領(lǐng)域的重要工具。然而,要在深度學(xué)習(xí)中實(shí)現(xiàn)高度復(fù)雜
2023-08-17 16:10:571072 深度學(xué)習(xí)算法庫(kù)框架學(xué)習(xí) 深度學(xué)習(xí)是一種非常強(qiáng)大的機(jī)器學(xué)習(xí)方法,它可以用于許多不同的應(yīng)用程序,例如計(jì)算機(jī)視覺(jué)、語(yǔ)言處理和自然語(yǔ)言處理。然而,實(shí)現(xiàn)深度學(xué)習(xí)技術(shù)需要使用一些算法庫(kù)框架。在本文中,我們將探討
2023-08-17 16:11:07412 深度學(xué)習(xí)框架連接技術(shù) 深度學(xué)習(xí)框架是一個(gè)能夠幫助機(jī)器學(xué)習(xí)和人工智能開(kāi)發(fā)人員輕松進(jìn)行模型訓(xùn)練、優(yōu)化及評(píng)估的軟件庫(kù)。深度學(xué)習(xí)框架連接技術(shù)則是需要使用深度學(xué)習(xí)模型的應(yīng)用程序必不可少的技術(shù),通過(guò)連接技術(shù)
2023-08-17 16:11:16443 深度學(xué)習(xí)框架和深度學(xué)習(xí)算法教程 深度學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中的一個(gè)重要分支,多年來(lái)深度學(xué)習(xí)一直在各個(gè)領(lǐng)域的應(yīng)用中發(fā)揮著極其重要的作用,成為了人工智能技術(shù)的重要組成部分。許多深度學(xué)習(xí)算法和框架提供
2023-08-17 16:11:26638 深度學(xué)習(xí)服務(wù)器怎么做 深度學(xué)習(xí)服務(wù)器diy 深度學(xué)習(xí)服務(wù)器主板用什么? 隨著人工智能的飛速發(fā)展,越來(lái)越多的人開(kāi)始投身于深度學(xué)習(xí)領(lǐng)域。但是,隨著深度學(xué)習(xí)的算法越來(lái)越復(fù)雜,需要更大的計(jì)算能力才能運(yùn)行
2023-08-17 16:11:29489 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別 隨著人工智能技術(shù)的不斷發(fā)展,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)已經(jīng)成為大家熟知的兩個(gè)術(shù)語(yǔ)。雖然它們都屬于人工智能技術(shù)的研究領(lǐng)域,但它們之間有很大的差異。本文將詳細(xì)介紹機(jī)器學(xué)習(xí)和深度學(xué)習(xí)
2023-08-17 16:11:402734 深度學(xué)習(xí)和機(jī)器學(xué)習(xí)是機(jī)器學(xué)習(xí)領(lǐng)域中兩個(gè)重要的概念,都是人工智能領(lǐng)域非常熱門的技術(shù)。兩者的關(guān)系十分密切,然而又存在一定的區(qū)別。下面從定義、優(yōu)缺點(diǎn)和區(qū)別方面一一闡述。
2023-08-21 18:27:151649 機(jī)器學(xué)習(xí)和深度學(xué)習(xí)是當(dāng)今最流行的人工智能(AI)技術(shù)之一。這兩種技術(shù)都有助于在不需要人類干預(yù)的情況下讓計(jì)算機(jī)自主學(xué)習(xí)和改進(jìn)預(yù)測(cè)模型。本文將探討機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的概念以及二者之間的區(qū)別。
2023-08-28 17:31:09888 近年來(lái),深度學(xué)習(xí)技術(shù)在語(yǔ)音合成領(lǐng)域取得了顯著的進(jìn)展。基于深度學(xué)習(xí)的語(yǔ)音合成技術(shù)能夠生成更加自然、真實(shí)的語(yǔ)音,提高了用戶體驗(yàn)。本文將介紹基于深度學(xué)習(xí)的語(yǔ)音合成技術(shù)的進(jìn)展以及未來(lái)趨勢(shì)。 一、基于深度學(xué)習(xí)
2023-09-16 14:48:21491 深度學(xué)習(xí)作為機(jī)器學(xué)習(xí)的一個(gè)分支,其學(xué)習(xí)方法可以分為監(jiān)督學(xué)習(xí)和無(wú)監(jiān)督學(xué)習(xí)。兩種方法都具有其獨(dú)特的學(xué)習(xí)模型:多層感知機(jī) 、卷積神經(jīng)網(wǎng)絡(luò)等屬于監(jiān) 督學(xué)習(xí);深度置信網(wǎng) 、自動(dòng)編碼器 、去噪自動(dòng)編碼器 、稀疏編碼等屬于無(wú)監(jiān)督學(xué)習(xí)。
2023-10-09 10:23:42302 一、引言 隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,其在語(yǔ)音識(shí)別領(lǐng)域的應(yīng)用也日益廣泛。深度學(xué)習(xí)技術(shù)可以有效地提高語(yǔ)音識(shí)別的精度和效率,并且被廣泛應(yīng)用于各種應(yīng)用場(chǎng)景。本文將探討深度學(xué)習(xí)在語(yǔ)音識(shí)別中的應(yīng)用及所面臨
2023-10-10 18:14:53449 如今,AI技術(shù)的廣泛應(yīng)用已經(jīng)成為推動(dòng)制造和物流領(lǐng)域自動(dòng)化的核心驅(qū)動(dòng)力。康耐視所推出的深度學(xué)習(xí)和邊緣學(xué)習(xí)技術(shù),這兩種基于AI的技術(shù),在工業(yè)自動(dòng)化領(lǐng)域有著廣泛的應(yīng)用前景。然而,由于這兩種技術(shù)在研發(fā)
2023-11-17 10:44:29242 易于上手,與深度學(xué)習(xí)技術(shù)融合后,使檢測(cè)準(zhǔn)確性提高到100%,同時(shí)簡(jiǎn)化了開(kāi)發(fā)流程,提高了效率,簡(jiǎn)單易用。相對(duì)單純的深度視覺(jué)系統(tǒng)優(yōu)勢(shì)VisionBank Ai深度學(xué)習(xí)
2021-04-02 14:07:08
評(píng)論
查看更多