資料介紹
ARM公司在32位RISC的CPU開發領域不斷取得突破,其結構已經從V3發展到V6。
BSP(Board Support Package)板級支持包介于主板硬件和操作系統之間,其功能與PC機上的BIOS相類似,主要完成硬件初始化并切換到相應的操作系統。BSP是相對于操作系統而言的,不同的操作系統對應于不同定義形式的BSP,例如VxWorks的BSP和Linux的BSP相對于某一CPU來說,盡管實現的功能一樣,可是寫法和接口定義是完全不同的。另外,仔細研究所用的芯片資料也十分重要,例如盡管ARM在內核上兼容,但每家芯片都有自己的特色。所以這就要求BSP程序員對硬件、軟件和操作系統都要有一定的了解。
本文介紹基于ARM體系的嵌入式應用系統初始化部分BSP的程序設計。本文引用的源碼全部是基于HMS320C7202芯片設計,并已成功運行。
1 初始化過程
盡管各種嵌入式應用系統的結構及功能差別很大,但其系統初始化部分完成的操作有很大一部分是相似的。嵌入式系統的啟動流程如圖1所示。
1.1 設置入口指針
啟動程序首先必須定義指針,而且整個應用程序只有一個入口指針。一般地,程序在編譯鏈接時將異常中斷向量表鏈接在0地址處,并且作為整個程序入口點。入口點代碼如下:
ENTRY(_start) ;開始
1.2 設置異常中斷向量表
ARM要求中斷向量表必須放置在從0開始、連續8×4字節的空間內。各異常中斷向量地址以及中斷的算是優先級如表1:
表1 各異常中斷的中斷向量地址以及中斷的處理優先級
中斷向量地址 異常中斷類型 異常中斷模式 優先級(6最低)
0x0 復位 特權模式(SVC) 1
0x4 未定義中斷 未定義指令中止模式(Undef) 6
0x8 軟件中斷(SWI) 特權模式(SVC) 6
0x0c 指令預取中止 中止模式 5
0x10 數據訪問中止 中止模式 2
0x14 保留 未使用 未使用
0x18 外部中斷請求(IRQ) 外部中斷(IRQ)模式 4
0x1c 快速中斷請求(FIQ) 快速中斷(FIQ)模式 3
每當一個中斷發生后,ARM處理器便強制把程序計數器(PC)指針置為向量表中對應中斷類型的地址值。因為每個中斷向量僅占據放置1條ARM指令的空間,所以通常放置1條跳轉指令或向程序計數器(PC)寄存器賦值的數據訪問指令,使程序跳轉到相應的異常中斷處理程序執行。如果異常中斷處理程序起始地址小于32MB,使用B跳轉指令;如果跳轉范圍大于32MB,使用LDR指令。
另外,對于各未用中斷,可使其指向一個只含返回指令的啞函數,以防止錯誤中斷引起系統的混亂。
1.3 初始化存儲系統
初始化存儲系統的編程對象是系統的存儲器控制器,一個系統可能存在多種存儲器類型的接口,不同的存儲系統的設計不盡相同。Flash和SRAM同屬于靜態存儲器類型,可以合用一個存儲器端口;而DRAM因為有動態刷新和地址線復用等特性,通常配有專用的存儲器端口。其中,SDRAM必須在初始化階段進行設置,因為大部分的程序代碼和數據都要在SDRAM中運行。
在HMS30C7202中,與SDRAM配置有關的寄存器有4個:配置寄存器、刷新定時寄存器、寫緩沖寫回寄存器和等待驅動寄存器,需要根據實際的系統設計對此分別加以正確配置。
SDRAM的初始化過程如下:加電→延遲10ms(各具體SDRAM器件延時時間可能不同)→設置配置寄存器參數→延時→寫刷新定時寄存器,設置刷新周期→延時→使能自動刷新→延時→設置模式寄存器(位于SDRAM內部)。
1.4 存儲器地址分布重映射(remap)和MMU
系統一上電,程序將自動從0地址處開始執行。因此,必須保證在0地址處存在正確的代碼,即要求0地址開始入是非易失性的ROM或Flash等。但是因為ROM或Flash的訪問速度相對較慢,每次中斷響應發生后,都要從讀取ROM或Flash上面的向量表開始,影響了中斷響應速度。一般程序執行后將SDRAM映射為地址0,并把系統程序加載到SDRAM中運行,其具體步驟可以采用以下的方案:
(1)上電后,從0地址的ROM開始往下執行;
(2)根據映射前的地址,對SDRAM進行必要的代碼和數據拷貝;
(3)拷貝完成后,進行重映射操作;
(4)因為RAM在重映射前準備好了內容,使得PC指針能繼續在RAM里取得正確的指令。
在這種地址映射的變化過程中,程序員需要仔細考慮的是:程序的執行流程不能被這種變化所打斷,注意保證程序流程在重映射前后的承接關系。
存儲器的地址分配是很靈活的,可以將I/O操作映射成內存操作,也可以通過映射對某些不可訪問的地址空間進行保護等。進行存儲器初始化設計時,一定要根據應用程序的具體要求來完成地址分配。對地址管理通過MMU即存儲器管理單元實現。
在ARM系統中,MMU通過頁式虛擬存儲管理,將虛擬空間和物理空間分別分成一個個固定大小的頁,并建立兩者之間的映射關系,從而實現虛擬地址到物理地址的轉換。MMU還可完成存儲器訪問權限的控制和虛擬存儲器空間緩沖特性的設置。
以下是實現MMU的部分代碼:
for=(i=1;i《0x1000;i++){
pagetable[i]=(i《《20)|MMU_SECDESC;
} //建立頁表,每頁大小為1MB,頁表偏移序號是物理地址的高12位;
for(addr=SDRAM_BASE;addr《(SDRAM_BASE+SDRAM_SIZE/2);addr+=SIZE_1M)
pagetable[addr》》20]=addr|MMU_SECDESE|
MMU_CACHEABLE|MMU_BUFFERABLE;
//將SDRAM_BASE至(SDRAM_BASE+SDRAM_SIZE/2)空間的設置為不可CACHE和不可BUFFER的
for(addr=SDRAM_BASE+SDRAM_SIZE/2;addr《(SDRAM_BASE+SDRAM_SIZE);addr+=SIZE_1M)
pagetable[addr》》20]=(addr+0x1000000)|
MMU_SECDESC|MMU_CACHEABLE|MMU_BUFFERABLE;
//將這段空間的地址映射關系設置為VA(虛擬地址)=PA(物理地址)+0x1000000
pagetable[0]=(0x42f00000)|MMU_SECDESC|MMU_CACHEABLE|MMU_BUFFERABLE;
//將SDRAM的虛擬地址0x42f00000映射到0處
1.5 初始化各模式下的堆棧指針
因為ARM處理器有7種執行狀態,每一種狀態的堆棧指針寄存器(SP)都是獨立的(System和User三項式使用相同SP寄存器)。因此,對程序中需要用到的每一種模式都要給SP寄存器定義一個堆棧地址。方法是改變狀態寄存器(CPSR)內的狀態位,使處理器切換到不同的狀態,然后給SP賦值。這里列出的代碼定義了三種模式的SP指針,其中,I_Bit表示IRQ的中斷禁止位;F_Bit表示FIQ的中斷禁止位:
@;Set up SVC stack to be 4K on top of zero-init data
LDR r1,=installStack
ADDsp,r1,#2048
@;Set up IRQ and FIQ stacks
MOV r0,#(Mode_IRQ32|I_Bit)
MSRcpsr,r0
MOV r0,r0
ADDsp,r1,#2048*2
MOV r0,#(Mode_FIQ32|I_Bit |F_Bit)
MSR cpsr,r0
MOV r0,r0
ADDsp,r1,#2048*3
一般堆棧的大小要根據需要而定,但是要盡可能給堆棧分配快速和高帶寬的存儲器。堆棧性能的提高對系統性能的影響是非常明顯的。
1.6 初始化有特殊要求的端口、設備
有些關鍵的I/O部件必須在使能IRQ和FIQ之前進行初始化。因為如果在使能IRQ和FIQ之前沒有進行初始化,可以產生假的異常中斷信號。程序中初始化了HMS30C7202的串口1用來調試程序與其它設備通信。串口1是一個通用全雙工異步接收/發送器(UART),它支持16C550的大部分功能。UART有接收緩沖/發送保持寄存器、波特率除數鎖存器、中斷允許寄存器等9個寄存器。對串口1的初始化主要是對各寄存器的設置,其實現代碼如下所示:
_outb(ser_base+0x30,1);
_outw(0x8002301c,0xffff9f9f) ;GPIO PORT A Enable
Register
_outw(0x800230A4,0x6060) ;GPIO PORT A MultiFunction elect-Register
serial_outb(SERIAL_LCR,0x80);
serial_outb(SERIAL_LCR,0x80);
serial_outb(SERIAL_DLL,baud_data[cur_baud]);
serial_outb(SERIAL_DLM,0x0);
serial_outb(SERIAL_LCR,0x03);
seial_outb(SERIAL_FCR,0x01);
serial_outb(SERIAL_IER,0x00);
serial_outb(SERIAL_MCR,0x03);
1.7 切換處理器模式,開中斷
最后轉換到應用程序運行所需的最終模式,一般是User模式。不要過早切換到User模式進行User模式的堆棧設備。因為進入User模式后就不能再操作CPRS回到別的模式了,可能會對接下去的程序執行造成影響。
這時才使能異常中斷,通過清除CPRS寄存器中的中斷禁止位實現。如果過早地開中斷,在系統初始化之前就觸發了有效中斷,會導致系統的死機。
BSP(Board Support Package)板級支持包介于主板硬件和操作系統之間,其功能與PC機上的BIOS相類似,主要完成硬件初始化并切換到相應的操作系統。BSP是相對于操作系統而言的,不同的操作系統對應于不同定義形式的BSP,例如VxWorks的BSP和Linux的BSP相對于某一CPU來說,盡管實現的功能一樣,可是寫法和接口定義是完全不同的。另外,仔細研究所用的芯片資料也十分重要,例如盡管ARM在內核上兼容,但每家芯片都有自己的特色。所以這就要求BSP程序員對硬件、軟件和操作系統都要有一定的了解。
本文介紹基于ARM體系的嵌入式應用系統初始化部分BSP的程序設計。本文引用的源碼全部是基于HMS320C7202芯片設計,并已成功運行。
1 初始化過程
盡管各種嵌入式應用系統的結構及功能差別很大,但其系統初始化部分完成的操作有很大一部分是相似的。嵌入式系統的啟動流程如圖1所示。
1.1 設置入口指針
啟動程序首先必須定義指針,而且整個應用程序只有一個入口指針。一般地,程序在編譯鏈接時將異常中斷向量表鏈接在0地址處,并且作為整個程序入口點。入口點代碼如下:
ENTRY(_start) ;開始
1.2 設置異常中斷向量表
ARM要求中斷向量表必須放置在從0開始、連續8×4字節的空間內。各異常中斷向量地址以及中斷的算是優先級如表1:
表1 各異常中斷的中斷向量地址以及中斷的處理優先級
中斷向量地址 異常中斷類型 異常中斷模式 優先級(6最低)
0x0 復位 特權模式(SVC) 1
0x4 未定義中斷 未定義指令中止模式(Undef) 6
0x8 軟件中斷(SWI) 特權模式(SVC) 6
0x0c 指令預取中止 中止模式 5
0x10 數據訪問中止 中止模式 2
0x14 保留 未使用 未使用
0x18 外部中斷請求(IRQ) 外部中斷(IRQ)模式 4
0x1c 快速中斷請求(FIQ) 快速中斷(FIQ)模式 3
每當一個中斷發生后,ARM處理器便強制把程序計數器(PC)指針置為向量表中對應中斷類型的地址值。因為每個中斷向量僅占據放置1條ARM指令的空間,所以通常放置1條跳轉指令或向程序計數器(PC)寄存器賦值的數據訪問指令,使程序跳轉到相應的異常中斷處理程序執行。如果異常中斷處理程序起始地址小于32MB,使用B跳轉指令;如果跳轉范圍大于32MB,使用LDR指令。
另外,對于各未用中斷,可使其指向一個只含返回指令的啞函數,以防止錯誤中斷引起系統的混亂。
1.3 初始化存儲系統
初始化存儲系統的編程對象是系統的存儲器控制器,一個系統可能存在多種存儲器類型的接口,不同的存儲系統的設計不盡相同。Flash和SRAM同屬于靜態存儲器類型,可以合用一個存儲器端口;而DRAM因為有動態刷新和地址線復用等特性,通常配有專用的存儲器端口。其中,SDRAM必須在初始化階段進行設置,因為大部分的程序代碼和數據都要在SDRAM中運行。
在HMS30C7202中,與SDRAM配置有關的寄存器有4個:配置寄存器、刷新定時寄存器、寫緩沖寫回寄存器和等待驅動寄存器,需要根據實際的系統設計對此分別加以正確配置。
SDRAM的初始化過程如下:加電→延遲10ms(各具體SDRAM器件延時時間可能不同)→設置配置寄存器參數→延時→寫刷新定時寄存器,設置刷新周期→延時→使能自動刷新→延時→設置模式寄存器(位于SDRAM內部)。
1.4 存儲器地址分布重映射(remap)和MMU
系統一上電,程序將自動從0地址處開始執行。因此,必須保證在0地址處存在正確的代碼,即要求0地址開始入是非易失性的ROM或Flash等。但是因為ROM或Flash的訪問速度相對較慢,每次中斷響應發生后,都要從讀取ROM或Flash上面的向量表開始,影響了中斷響應速度。一般程序執行后將SDRAM映射為地址0,并把系統程序加載到SDRAM中運行,其具體步驟可以采用以下的方案:
(1)上電后,從0地址的ROM開始往下執行;
(2)根據映射前的地址,對SDRAM進行必要的代碼和數據拷貝;
(3)拷貝完成后,進行重映射操作;
(4)因為RAM在重映射前準備好了內容,使得PC指針能繼續在RAM里取得正確的指令。
在這種地址映射的變化過程中,程序員需要仔細考慮的是:程序的執行流程不能被這種變化所打斷,注意保證程序流程在重映射前后的承接關系。
存儲器的地址分配是很靈活的,可以將I/O操作映射成內存操作,也可以通過映射對某些不可訪問的地址空間進行保護等。進行存儲器初始化設計時,一定要根據應用程序的具體要求來完成地址分配。對地址管理通過MMU即存儲器管理單元實現。
在ARM系統中,MMU通過頁式虛擬存儲管理,將虛擬空間和物理空間分別分成一個個固定大小的頁,并建立兩者之間的映射關系,從而實現虛擬地址到物理地址的轉換。MMU還可完成存儲器訪問權限的控制和虛擬存儲器空間緩沖特性的設置。
以下是實現MMU的部分代碼:
for=(i=1;i《0x1000;i++){
pagetable[i]=(i《《20)|MMU_SECDESC;
} //建立頁表,每頁大小為1MB,頁表偏移序號是物理地址的高12位;
for(addr=SDRAM_BASE;addr《(SDRAM_BASE+SDRAM_SIZE/2);addr+=SIZE_1M)
pagetable[addr》》20]=addr|MMU_SECDESE|
MMU_CACHEABLE|MMU_BUFFERABLE;
//將SDRAM_BASE至(SDRAM_BASE+SDRAM_SIZE/2)空間的設置為不可CACHE和不可BUFFER的
for(addr=SDRAM_BASE+SDRAM_SIZE/2;addr《(SDRAM_BASE+SDRAM_SIZE);addr+=SIZE_1M)
pagetable[addr》》20]=(addr+0x1000000)|
MMU_SECDESC|MMU_CACHEABLE|MMU_BUFFERABLE;
//將這段空間的地址映射關系設置為VA(虛擬地址)=PA(物理地址)+0x1000000
pagetable[0]=(0x42f00000)|MMU_SECDESC|MMU_CACHEABLE|MMU_BUFFERABLE;
//將SDRAM的虛擬地址0x42f00000映射到0處
1.5 初始化各模式下的堆棧指針
因為ARM處理器有7種執行狀態,每一種狀態的堆棧指針寄存器(SP)都是獨立的(System和User三項式使用相同SP寄存器)。因此,對程序中需要用到的每一種模式都要給SP寄存器定義一個堆棧地址。方法是改變狀態寄存器(CPSR)內的狀態位,使處理器切換到不同的狀態,然后給SP賦值。這里列出的代碼定義了三種模式的SP指針,其中,I_Bit表示IRQ的中斷禁止位;F_Bit表示FIQ的中斷禁止位:
@;Set up SVC stack to be 4K on top of zero-init data
LDR r1,=installStack
ADDsp,r1,#2048
@;Set up IRQ and FIQ stacks
MOV r0,#(Mode_IRQ32|I_Bit)
MSRcpsr,r0
MOV r0,r0
ADDsp,r1,#2048*2
MOV r0,#(Mode_FIQ32|I_Bit |F_Bit)
MSR cpsr,r0
MOV r0,r0
ADDsp,r1,#2048*3
一般堆棧的大小要根據需要而定,但是要盡可能給堆棧分配快速和高帶寬的存儲器。堆棧性能的提高對系統性能的影響是非常明顯的。
1.6 初始化有特殊要求的端口、設備
有些關鍵的I/O部件必須在使能IRQ和FIQ之前進行初始化。因為如果在使能IRQ和FIQ之前沒有進行初始化,可以產生假的異常中斷信號。程序中初始化了HMS30C7202的串口1用來調試程序與其它設備通信。串口1是一個通用全雙工異步接收/發送器(UART),它支持16C550的大部分功能。UART有接收緩沖/發送保持寄存器、波特率除數鎖存器、中斷允許寄存器等9個寄存器。對串口1的初始化主要是對各寄存器的設置,其實現代碼如下所示:
_outb(ser_base+0x30,1);
_outw(0x8002301c,0xffff9f9f) ;GPIO PORT A Enable
Register
_outw(0x800230A4,0x6060) ;GPIO PORT A MultiFunction elect-Register
serial_outb(SERIAL_LCR,0x80);
serial_outb(SERIAL_LCR,0x80);
serial_outb(SERIAL_DLL,baud_data[cur_baud]);
serial_outb(SERIAL_DLM,0x0);
serial_outb(SERIAL_LCR,0x03);
seial_outb(SERIAL_FCR,0x01);
serial_outb(SERIAL_IER,0x00);
serial_outb(SERIAL_MCR,0x03);
1.7 切換處理器模式,開中斷
最后轉換到應用程序運行所需的最終模式,一般是User模式。不要過早切換到User模式進行User模式的堆棧設備。因為進入User模式后就不能再操作CPRS回到別的模式了,可能會對接下去的程序執行造成影響。
這時才使能異常中斷,通過清除CPRS寄存器中的中斷禁止位實現。如果過早地開中斷,在系統初始化之前就觸發了有效中斷,會導致系統的死機。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- ARM開發教程之ARM體系的嵌入式系統BSP的程序的設計說明
- ARM開發教程之ARM體系的嵌入式系統BSP的程序設計
- ARM嵌入式系統BSP的程序設計總結
- 嵌入式系統原理及應用教程之ARM匯編語言程序設計的詳細資料說明 11次下載
- ARM嵌入式系統教程之ARM嵌入式系統的四個實驗介紹 20次下載
- 嵌入式系統與C程序設計 13次下載
- 基于MATLAB平臺的DSP嵌入式應用程序設計的研究 5次下載
- MATLAB平臺的DSP嵌入式應用程序設計的研究 7次下載
- 嵌入式系統的C程序設計 42次下載
- 嵌入式系統的C程序設計 1次下載
- 基于ARM的BSP程序設計方案
- 嵌入式系統的c程序設計
- 嵌入式系統的C程序設計
- 基于ARM的嵌入式程序設計從硬件到軟件共8章1
- 嵌入式系統的C程序設計
- 用C語言構建高效的嵌入式程序 498次閱讀
- 解析PLC梯形圖程序設計 1402次閱讀
- 嵌入式系統的全面解析 3146次閱讀
- 基于S3C2410處理器對Windows CE 5.0操作系統實現BSP移植 977次閱讀
- 基于嵌入式軟件的JNI技術應用解析 1020次閱讀
- 該如何正確選擇嵌入式操作系統 2707次閱讀
- 目前國內在ARM CPU上廣泛采用的三種嵌入式操作系統淺析 3894次閱讀
- 關于嵌入式串口同步幀數方法解析知識你知道多少?該怎么樣才能學好嵌入式技術? 1395次閱讀
- 基于ARM嵌入式系統的數字音頻播放系統設計 4052次閱讀
- 嵌入式系統開發中驅動程序設計的5個方法盤點 3057次閱讀
- 基于FPGA嵌入式系統的智能小車全面解析 9097次閱讀
- ARM嵌入式系統硬件設計及應用實例詳解 1w次閱讀
- 嵌入式C實現延時程序的不同變量的區別 幾種Linux嵌入式開發環境的簡單介紹 1566次閱讀
- 對于嵌入式沒有嵌入式軟件架構師的詳細解析 4055次閱讀
- 成為ARM嵌入式系統硬件高手的要素 1546次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1490次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 92次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關電源原理及各功能電路詳解
- 0.38 MB | 10次下載 | 免費
- 6基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
- 7藍牙設備在嵌入式領域的廣泛應用
- 0.63 MB | 3次下載 | 免費
- 89天練會電子電路識圖
- 5.91 MB | 3次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關電源設計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537791次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233045次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多