資料介紹
In the 1980s and early 1990s, a great deal of research effort (both industrial
and academic) was expended on the design and implementation of hardware
neurocomputers [5, 6, 7, 8]. But, on the whole, most efforts may be judged
to have been unsuccessful: at no time have have hardware neurocomputers
been in wide use; indeed, the entire field was largely moribund by the end the
1990s. This lack of success may be largely attributed to the fact that earlier
work was almost entirely based on ASIC technology but was never sufficiently
developed or competetive enough to justify large-scale adoption; gate-arrays
of the period mentioned were never large enough nor fast enough for serious
neural-network applications.1 Nevertheless, the current literature shows that
ASIC neurocomputers appear to be making some sort of a comeback [1, 2, 3];
we shall argue below that these efforts are destined to fail for exactly the same
reasons that earlier ones did. On the other hand, the capacity and performance
of current FPGAs are such that they present a much more realistic alternative.
We shall in what follows give more detailed arguments to support these claims.
The chapter is organized as follows. Section 2 is a review of the fundamentals
of neural networks; still, it is expected that most readers of the book will already be familiar with these. Section 3 briefly contrasts ASIC-neurocomputers
with FPGA-neurocomputers, with the aim of presenting a clear case for the
former; a more significant aspects of this argument will be found in [18]. One
of the most repeated arguments for implementing neural networks in hardware
is the parallelism that the underlying models possess. Section 4 is a short section
that reviews this. In Section 5 we briefly describe the realization of a
state-of-the art FPGA device. The objective there is to be able to put into a
concrete context certain following discussions and to be able to give grounded
discussions of what can or cannot be achieved with current FPGAs. Section
6 deals with certain aspects of computer arithmetic that are relevant to neuralnetwork implementations. Much of this is straightforward, and our main aim
is to highlight certain subtle aspects. Section 7 nominally deals with activation
functions, but is actually mostly devoted to the sigmoid function. There
are two main reasons for this choice: first, the chapter contains a significant
contribution to the implementation of elementary or near-elementary activation
functions, the nature of which contribution is not limited to the sigmoid
function; second, the sigmoid function is the most important activation function
for neural networks. In Section 8, we very briefly address an important
issue — performance evaluation. Our goal here is simple and can be stated
quite succintly: as far as performance-evaluation goes, neurocomputer architecture
continues to languish in the “Dark Ages", and this needs to change. A
final section summarises the main points made in chapter and also serves as a
brief introduction to subsequent chapters in the book.
- 基于FPGA的RBF神經網絡的硬件實現
- 人工神經網絡的原理及仿真實例 0次下載
- 基于FPGA的神經網絡硬件實現方法 37次下載
- 基于進化計算的神經網絡設計與實現 4次下載
- 基于FPGA的SIMD卷積神經網絡加速器 24次下載
- 人工神經網絡控制 13次下載
- 人工智能-BP神經網絡算法的簡單實現 12次下載
- 基于FPGA的RBF神經網絡硬件實現 26次下載
- MATLAB實現卷積神經網絡CNN的源代碼 16次下載
- 神經網絡圖像壓縮算法的FPGA實現技術研究論文免費下載 11次下載
- 基于FPGA集群的NEST脈沖神經網絡仿真器 10次下載
- 如何使用FPGA實現BP神經網絡的仿真線設計 12次下載
- 如何使用FPGA實現神經網絡硬件的設計方法 6次下載
- 神經網絡與神經網絡控制的學習課件免費下載 7次下載
- 神經網絡圖像壓縮算法的FPGA實現技術研究 19次下載
- 基于FPGA的脈沖神經網絡模型應用探索 259次閱讀
- 遞歸神經網絡的實現方法 186次閱讀
- BP神經網絡和卷積神經網絡的關系 530次閱讀
- BP神經網絡和人工神經網絡的區別 342次閱讀
- 基于MATLAB的BP神經網絡實現方式 240次閱讀
- 全連接前饋神經網絡與前饋神經網絡的比較 7427次閱讀
- 深度神經網絡與基本神經網絡的區別 307次閱讀
- 卷積神經網絡與循環神經網絡的區別 878次閱讀
- 神經網絡架構有哪些 324次閱讀
- 如何使用Numpy搭建神經網絡 3500次閱讀
- 一種基于FPGA的神經網絡硬件實現方案詳解 1.3w次閱讀
- BP神經網絡概述 4.4w次閱讀
- 基于Numpy實現神經網絡:如何加入和調整dropout? 7491次閱讀
- 基于Numpy實現同態加密神經網絡 7774次閱讀
- 基于FPGA的神經網絡算法的設計 5524次閱讀
下載排行
本周
- 1電子電路原理第七版PDF電子教材免費下載
- 0.00 MB | 1491次下載 | 免費
- 2單片機典型實例介紹
- 18.19 MB | 95次下載 | 1 積分
- 3S7-200PLC編程實例詳細資料
- 1.17 MB | 27次下載 | 1 積分
- 4筆記本電腦主板的元件識別和講解說明
- 4.28 MB | 18次下載 | 4 積分
- 5開關電源原理及各功能電路詳解
- 0.38 MB | 11次下載 | 免費
- 6100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 7基于單片機和 SG3525的程控開關電源設計
- 0.23 MB | 4次下載 | 免費
- 8基于AT89C2051/4051單片機編程器的實驗
- 0.11 MB | 4次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 2PADS 9.0 2009最新版 -下載
- 0.00 MB | 66304次下載 | 免費
- 3protel99下載protel99軟件下載(中文版)
- 0.00 MB | 51209次下載 | 免費
- 4LabView 8.0 專業版下載 (3CD完整版)
- 0.00 MB | 51043次下載 | 免費
- 5555集成電路應用800例(新編版)
- 0.00 MB | 33562次下載 | 免費
- 6接口電路圖大全
- 未知 | 30320次下載 | 免費
- 7Multisim 10下載Multisim 10 中文版
- 0.00 MB | 28588次下載 | 免費
- 8開關電源設計實例指南
- 未知 | 21539次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935053次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537793次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234313次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191183次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183277次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138039次下載 | 免費
評論
查看更多