資料介紹
異步SRAM產品分為快速與低功耗兩個極為不同的產品類型,每個系列都具有其自己的一系列特性、應用和價格??焖佼惒絊RAM具有更快的存取速度,但功耗較高;低功耗SRAM功耗低,但存取速度慢。
從技術角度看,需要進行這樣的利弊權衡:在低功耗SRAM中,使用特殊柵極誘導漏極泄漏(GIDL)控制技術來控制待機電流,以控制待機功耗。這些技術涉及在上拉路徑或下拉路徑中增加額外的晶體管,這樣存取延遲就會加劇,從而會增加存取時間。在高速SRAM中,存取時間具有最高優先級,因此無法使用這種技術。此外,該晶體管也可增大尺寸,以增加電荷流。尺寸的增大可減少傳播延遲,但同時會增加功耗。
從應用需求角度看,該權衡奠定了兩種不同的應用基礎??焖賁RAM在作為高速處理器的直接接口高速緩存或高速暫存擴展存儲器時工作良好。低功耗異步SRAM可用于為功耗必須非常低的系統臨時存儲數據。因此,快速SRAM通常用于服務器和航空設備等高性能系統,而低功耗SRAM則主要用于POS終端以及PLC等電池供電設備。
然而,隨著技術的不斷發展,越來越多的有線設備也推出了電池供電移動版本。過去幾年,我們還見證了無線應用的大量推出,其帶來了無線設備的長足發展。物聯網(IoT)促進了新一代醫療設備、手持設備、消費類電子產品、通信系統以及工業控制器的發展,它們正在徹底改變各種設備的工作與通信方式。在這些移動設備中,快速SRAM和低功耗SRAM都不能全面滿足需求??焖賁RAM流耗大,很快就會耗盡電池,而低功耗SRAM則存取速度不足,不能滿足這些復雜設備的需求。
對于現代電子設備的所有重要組件而言,降低功耗并縮小封裝是目前面臨的兩個最大的挑戰。對于異步SRAM來說,這種挑戰就是在小型封裝中創建功耗顯著降低的快速SRAM.雖然很多SRAM制造商都已經開始提供采用少數引腳及裸片尺寸封裝的產品,但并沒有滿足市場對高性能低功耗存儲器的需求。
電源管理和待機功耗
定義設備功耗有兩個主要參數,分別是工作功耗和待機功耗。工作功耗是指設備在主動執行其主要功能時消耗的電源。對于SRAM來說,就是在執行讀寫功能時消耗的電源。待機功耗是指設備沒有工作,但依然處于通電狀態時所消耗的電源。對于絕大多數手持設備而言,SRAM大約有20%的時間在工作,而在其余80%的時間里,SRAM以待機模式與電源相連。
在以前大部分電子設備都連接至電源插座的時代,待機功耗在成本和便捷性方面都不是什么問題。然而對于當前電池供電設備而言,待機功耗可增加明顯的電源優勢。如果電源是不可充電的電池,那電池消耗殆盡的速度會更快。在可充電電池應用中,最大的問題是:如果需要過于頻繁地充電就很不方便,這正好違背了移動設備的初衷。
降低功耗的需求最早來自微控制器,因此制造商不得不尋找各種替代方案代替傳統工作及待機這兩種狀態模式。這使TI和NXP等公司推出了具有特殊低功耗工作模式(稱為深度斷電模式或深度睡眠模式)的MCU.這些控制器可在正常工作中全速運行,而在不需要時則進入低功耗模式。這樣,系統可在不影響高性能的情況下降低功耗。在該低功耗模式下,外設和存儲設備也有望省電。電源管理的重點現已轉移至與這些系統相連的存儲設備。
支持片上電源管理的SRAM
在我們介紹片上電源管理SRAM的概念及無限潛力之前,我們先來了解為什么現在需要它。在電路板上,異步SRAM通常與MCU相連作為擴展存儲器,其可用做高速緩存或高速暫存存儲器。與DRAM和閃存等其它存儲性存儲器相比,SRAM具有密度局限性:當前可用的SRAM最大存儲密度是8MB,而DRAM則已進入GB時代。然而,MCU很難跟DRAM或閃存直接連接,因為這些存儲器一般具有很長的寫入周期,不能與MCU同步。高速工作的MCU需要可以存儲重要數據的高速緩存,以及以一種能夠進行快速存取的方式進行的各種臨時運算。SRAM最適合用作MCU與存儲性存儲器之間的高速緩存。
下圖不僅更好地說明了存儲器的不同階段,而且還指出了哪里需要SRAM:
(圖片來源:https://ece.uwaterloo.ca/~cdr/pubs/Andrei_PhD_thesis.pdf)
?
以下因素進一步推動了對低功耗快速SRAM的需求:
1.在具有各種新工藝節點的現代MCU中,嵌入式高速緩存的作用越來越有限;
2.由于上述原因以及MCU現已變得越來越高級,因此外部高速緩存正日益變得更加重要。因而,當務之急是讓SRAM不再成為限制因素;
3.在電池供電應用中,功耗是客戶購買時考慮的重要參數。因此,SRAM芯片的高待機功耗是無法接受的。
由于以上所有因素,SRAM制造商多年來一直在嘗試取消快速產品與低功耗產品之間的利弊權衡。其中一個解決方案是混合器件——在存取時間和功耗上進行快速與低功耗的搭配。然而,這些混合SRAM無法滿足快速SRAM可滿足的性能要求。最好的解決方案是支持片上電源管理的快速SRAM,其既可確保高性能,又可實現低功耗。
支持片上電源管理的SRAM的工作方式跟支持片上電源管理的MCU類似。除了工作模式和待機工作模式以外,還有深度睡眠工作模式。這種設置允許SRAM芯片在標準工作模式下全速存取數據,而在深度睡眠模式下不執行任何功能,因此流耗極低(比普通快速SRAM的待機功耗低1000倍)。
下表針對快速SRAM、低功耗SRAM以及支持深度睡眠工作模式的快速SRAM進行了各種參數比較:
這些數字清楚地展示了與使用標準快速SRAM相比,使用“帶深度睡眠模式”的SRAM的優勢。在SRAM大部分時間都處于待機狀態的應用中,該優勢會更加明顯。
我們來假設一個場景:某器件工作了一千個小時,SRAM的工作時間只占其中的20%.如果該SRAM是一款工作電壓為3.3V的快速SRAM,那它的工作功耗就將為120瓦時(WH),待機功耗為80 WH.總功耗將為200 WH.現在,如果我們使用具有深度睡眠模式的快速SRAM,工作功耗依然是120 WH,但待機功耗則銳減至0.06 WH.總功耗大約為121 WH.因此在該具體應用中,深度睡眠選項可將功耗降低40%.然而在使用深度睡眠模式時(無論是MCU還是SRAM),需要考慮的一個因數是進入和退出深度睡眠模式所需的時間。如果這兩個工作周期的時間間隔比SRAM進入和退出深度睡眠模式所用的時間還短,那該方法就不適合。
迄今為止,唯一推出支持片上電源管理的SRAM的公司是賽普拉斯半導體公司,該產品為PowerSnoozeTM.PowerSnooze SRAM采用54-TSOP和48-BGA等標準封裝,與普通快速SRAM一樣。為使用深度睡眠功能,該產品還提供了一個特殊引腳(DS),可將低電平有效切換至進入深度睡眠模式。標準快速SRAM上的同等引腳恰恰是無連接(NC)。因此只需極少的設計工作(只需連接一個額外的引腳),便可將標準快速SRAM升級為PowerSnooze SRAM.
?
?
從技術角度看,需要進行這樣的利弊權衡:在低功耗SRAM中,使用特殊柵極誘導漏極泄漏(GIDL)控制技術來控制待機電流,以控制待機功耗。這些技術涉及在上拉路徑或下拉路徑中增加額外的晶體管,這樣存取延遲就會加劇,從而會增加存取時間。在高速SRAM中,存取時間具有最高優先級,因此無法使用這種技術。此外,該晶體管也可增大尺寸,以增加電荷流。尺寸的增大可減少傳播延遲,但同時會增加功耗。
從應用需求角度看,該權衡奠定了兩種不同的應用基礎??焖賁RAM在作為高速處理器的直接接口高速緩存或高速暫存擴展存儲器時工作良好。低功耗異步SRAM可用于為功耗必須非常低的系統臨時存儲數據。因此,快速SRAM通常用于服務器和航空設備等高性能系統,而低功耗SRAM則主要用于POS終端以及PLC等電池供電設備。
然而,隨著技術的不斷發展,越來越多的有線設備也推出了電池供電移動版本。過去幾年,我們還見證了無線應用的大量推出,其帶來了無線設備的長足發展。物聯網(IoT)促進了新一代醫療設備、手持設備、消費類電子產品、通信系統以及工業控制器的發展,它們正在徹底改變各種設備的工作與通信方式。在這些移動設備中,快速SRAM和低功耗SRAM都不能全面滿足需求??焖賁RAM流耗大,很快就會耗盡電池,而低功耗SRAM則存取速度不足,不能滿足這些復雜設備的需求。
對于現代電子設備的所有重要組件而言,降低功耗并縮小封裝是目前面臨的兩個最大的挑戰。對于異步SRAM來說,這種挑戰就是在小型封裝中創建功耗顯著降低的快速SRAM.雖然很多SRAM制造商都已經開始提供采用少數引腳及裸片尺寸封裝的產品,但并沒有滿足市場對高性能低功耗存儲器的需求。
電源管理和待機功耗
定義設備功耗有兩個主要參數,分別是工作功耗和待機功耗。工作功耗是指設備在主動執行其主要功能時消耗的電源。對于SRAM來說,就是在執行讀寫功能時消耗的電源。待機功耗是指設備沒有工作,但依然處于通電狀態時所消耗的電源。對于絕大多數手持設備而言,SRAM大約有20%的時間在工作,而在其余80%的時間里,SRAM以待機模式與電源相連。
在以前大部分電子設備都連接至電源插座的時代,待機功耗在成本和便捷性方面都不是什么問題。然而對于當前電池供電設備而言,待機功耗可增加明顯的電源優勢。如果電源是不可充電的電池,那電池消耗殆盡的速度會更快。在可充電電池應用中,最大的問題是:如果需要過于頻繁地充電就很不方便,這正好違背了移動設備的初衷。
降低功耗的需求最早來自微控制器,因此制造商不得不尋找各種替代方案代替傳統工作及待機這兩種狀態模式。這使TI和NXP等公司推出了具有特殊低功耗工作模式(稱為深度斷電模式或深度睡眠模式)的MCU.這些控制器可在正常工作中全速運行,而在不需要時則進入低功耗模式。這樣,系統可在不影響高性能的情況下降低功耗。在該低功耗模式下,外設和存儲設備也有望省電。電源管理的重點現已轉移至與這些系統相連的存儲設備。
支持片上電源管理的SRAM
在我們介紹片上電源管理SRAM的概念及無限潛力之前,我們先來了解為什么現在需要它。在電路板上,異步SRAM通常與MCU相連作為擴展存儲器,其可用做高速緩存或高速暫存存儲器。與DRAM和閃存等其它存儲性存儲器相比,SRAM具有密度局限性:當前可用的SRAM最大存儲密度是8MB,而DRAM則已進入GB時代。然而,MCU很難跟DRAM或閃存直接連接,因為這些存儲器一般具有很長的寫入周期,不能與MCU同步。高速工作的MCU需要可以存儲重要數據的高速緩存,以及以一種能夠進行快速存取的方式進行的各種臨時運算。SRAM最適合用作MCU與存儲性存儲器之間的高速緩存。
下圖不僅更好地說明了存儲器的不同階段,而且還指出了哪里需要SRAM:
(圖片來源:https://ece.uwaterloo.ca/~cdr/pubs/Andrei_PhD_thesis.pdf)
?
以下因素進一步推動了對低功耗快速SRAM的需求:
1.在具有各種新工藝節點的現代MCU中,嵌入式高速緩存的作用越來越有限;
2.由于上述原因以及MCU現已變得越來越高級,因此外部高速緩存正日益變得更加重要。因而,當務之急是讓SRAM不再成為限制因素;
3.在電池供電應用中,功耗是客戶購買時考慮的重要參數。因此,SRAM芯片的高待機功耗是無法接受的。
由于以上所有因素,SRAM制造商多年來一直在嘗試取消快速產品與低功耗產品之間的利弊權衡。其中一個解決方案是混合器件——在存取時間和功耗上進行快速與低功耗的搭配。然而,這些混合SRAM無法滿足快速SRAM可滿足的性能要求。最好的解決方案是支持片上電源管理的快速SRAM,其既可確保高性能,又可實現低功耗。
支持片上電源管理的SRAM的工作方式跟支持片上電源管理的MCU類似。除了工作模式和待機工作模式以外,還有深度睡眠工作模式。這種設置允許SRAM芯片在標準工作模式下全速存取數據,而在深度睡眠模式下不執行任何功能,因此流耗極低(比普通快速SRAM的待機功耗低1000倍)。
下表針對快速SRAM、低功耗SRAM以及支持深度睡眠工作模式的快速SRAM進行了各種參數比較:
這些數字清楚地展示了與使用標準快速SRAM相比,使用“帶深度睡眠模式”的SRAM的優勢。在SRAM大部分時間都處于待機狀態的應用中,該優勢會更加明顯。
我們來假設一個場景:某器件工作了一千個小時,SRAM的工作時間只占其中的20%.如果該SRAM是一款工作電壓為3.3V的快速SRAM,那它的工作功耗就將為120瓦時(WH),待機功耗為80 WH.總功耗將為200 WH.現在,如果我們使用具有深度睡眠模式的快速SRAM,工作功耗依然是120 WH,但待機功耗則銳減至0.06 WH.總功耗大約為121 WH.因此在該具體應用中,深度睡眠選項可將功耗降低40%.然而在使用深度睡眠模式時(無論是MCU還是SRAM),需要考慮的一個因數是進入和退出深度睡眠模式所需的時間。如果這兩個工作周期的時間間隔比SRAM進入和退出深度睡眠模式所用的時間還短,那該方法就不適合。
迄今為止,唯一推出支持片上電源管理的SRAM的公司是賽普拉斯半導體公司,該產品為PowerSnoozeTM.PowerSnooze SRAM采用54-TSOP和48-BGA等標準封裝,與普通快速SRAM一樣。為使用深度睡眠功能,該產品還提供了一個特殊引腳(DS),可將低電平有效切換至進入深度睡眠模式。標準快速SRAM上的同等引腳恰恰是無連接(NC)。因此只需極少的設計工作(只需連接一個額外的引腳),便可將標準快速SRAM升級為PowerSnooze SRAM.
?
?
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 如何實現SDRAM存儲器并通過接口連接到高性能微控制器
- TPS53515低功耗DDR存儲器電源參考設計
- 高性能異步SRAM技術角度
- SRAM隨機存儲器的特點及結構
- 高性能低功耗開關電源控制芯片SP5623數據手冊 20次下載
- 最高性能、最低功耗的雙混頻器
- 如何使用Virtex4和FPGA實現低功耗圖像融合系統 121次下載
- SRAM存儲器接口的Protel DXP電路圖免費下載 13次下載
- SRAM存儲器的訪問與控制的實驗資料說明 16次下載
- 根據 Linux 的操作系統探究存儲器特性及性能 9次下載
- 低功耗的高性能四路組相聯CMOS高速緩沖存儲器 12次下載
- 基于SOC的高性能存儲器控制器設計 0次下載
- 在高性能、低功耗浮點處理精度方面實現飛躍 39次下載
- MaxArias無線存儲器芯片
- 為實現最高性能選擇正確的SRAM架構方案
- 為什么Maxim選擇設計單件NV SRAM模塊 477次閱讀
- 從MAXQ8913微控制器上的RAM執行應用代碼 494次閱讀
- 使用IAR編譯器在MAXQ微控制器上分配閃存和SRAM存儲器 1184次閱讀
- 動態隨機存儲器集成工藝(DRAM)詳解 7764次閱讀
- 采用FM20L08鐵電存儲器實現溫度記錄儀系統的設計 2352次閱讀
- 如何使用Freeze技術實現低功耗設計 1983次閱讀
- SRAM存儲器的并行接口和串行接口對比 4398次閱讀
- PSoC 6高性能超低功耗IoT應用方案 4238次閱讀
- 半導體存儲器技術及發展趨勢詳解 1.2w次閱讀
- 新型的存儲器技術有哪些 新型存儲器能解決哪些問題 1.1w次閱讀
- 一種多功能存儲器芯片的測試系統硬件設計與實現詳解 2029次閱讀
- 三種不同方法表征存儲器特性 1552次閱讀
- flash存儲器在線編程 3951次閱讀
- MSP432:低功耗與高性能的完美搭配 5512次閱讀
- MAXQ構架上閃存和SRAM存儲器的分配 2425次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 2開關電源基礎知識
- 5.73 MB | 6次下載 | 免費
- 3100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 4嵌入式linux-聊天程序設計
- 0.60 MB | 3次下載 | 免費
- 5基于FPGA的光纖通信系統的設計與實現
- 0.61 MB | 2次下載 | 免費
- 6基于FPGA的C8051F單片機開發板設計
- 0.70 MB | 2次下載 | 免費
- 751單片機窗簾控制器仿真程序
- 1.93 MB | 2次下載 | 免費
- 8基于51單片機的RGB調色燈程序仿真
- 0.86 MB | 2次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 2555集成電路應用800例(新編版)
- 0.00 MB | 33564次下載 | 免費
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費
- 4開關電源設計實例指南
- 未知 | 21548次下載 | 免費
- 5電氣工程師手冊免費下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費
- 6數字電路基礎pdf(下載)
- 未知 | 13750次下載 | 免費
- 7電子制作實例集錦 下載
- 未知 | 8113次下載 | 免費
- 8《LED驅動電路設計》 溫德爾著
- 0.00 MB | 6653次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537796次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420026次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191185次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183278次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138040次下載 | 免費
評論
查看更多